scholarly journals Waterlogging tolerance of grass pea (Lathyrus sativus L.) at germination related to country of origin

2020 ◽  
pp. 1-14
Author(s):  
Edi Wiraguna ◽  
Al Imran Malik ◽  
Timothy David Colmer ◽  
William Erskine

Abstract Grass pea (Lathyrus sativus L.) has a Mediterranean origin and was spread to Western Europe, Africa and South Asia. Over time, this grain legume crop has become important in South Asia, where it is often affected by waterlogging at germination. Therefore, varieties with waterlogging tolerance of seeds at germination are needed. This study evaluated waterlogging tolerance in a grass pea diversity panel. First, morpho-agronomic traits of 53 grass pea genotypes from 7 diverse countries (Afghanistan, Australia, Bangladesh, Cyprus, Ethiopia, Greece and Pakistan) were measured in a glasshouse. Seeds of the collection were then sown into waterlogged soil for 6 days and is subsequently drained for 8 days. Finally, representative genotypes from each country of origin of the three survival patterns (described below) were then tested to identify the effect of seed priming on germination and seedling growth in waterlogged soil. Canonical analysis of six traits (seed weight, pod length, pod width, flowering time, time to maturity and seedling survival) showed that genotypes from Bangladesh and Ethiopia were similar. There was a significant variation amongst genotypes in waterlogging tolerance. Genotypes from Bangladesh and Ethiopia showed the highest percent seedling survival (54% and 47%), with an ability to germinate under waterlogging and then maintain growth from the first day of draining to the final sampling (Pattern 1). In contrast, genotypes from other origins either germinated during waterlogging, but did not survive during drainage (Pattern 2) or failed to germinate and had low seedling survival during waterlogging and drainage (Pattern 3). Priming seeds reduced seedling survival in grass pea. Despite Mediterranean origin, specific ecotypes of grass pea with greater waterlogging tolerance under warm wet conditions have been favoured in Bangladesh and Ethiopia where adaptation to extreme precipitation events at germination and seedling survival upon soil drainage is critical for successful crops.

2020 ◽  
Author(s):  
Moshe Goldsmith ◽  
Shiri Barad ◽  
Maor Knafo ◽  
Alon Savidor ◽  
Shifra Ben-Dor ◽  
...  

AbstractGrass pea (Lathyrus sativus L.) is a grain legume commonly grown in parts of Asia and Africa for food and forage. While being a highly nutritious and robust crop, able to survive both drought and floods, it produces a neurotoxic compound, β-N-oxalyl-L-α,β-diaminopropionic acid (β-ODAP), which can cause a severe neurological disorder if consumed as a main diet component. So far, the enzyme that catalyzes the formation of β-ODAP has not been identified. By combining protein purification and enzymatic assays with transcriptomic and proteomic analyses, we were able to identify the enzyme β-ODAP synthetase (BOS) from grass pea. We show that BOS is an HXXXD-type acyltransferase of the BAHD superfamily and that its crystal structure is highly similar to that of plant hydroxycinnamoyl transferases. The identification of BOS, more than 50 years after it was proposed, paves the way towards the generation of non-toxic grass pea cultivars safe for human and animal consumption.


2015 ◽  
Vol 134 (3) ◽  
pp. 338-344 ◽  
Author(s):  
Khela R. Soren ◽  
Ashutosh Yadav ◽  
Gaurav Pandey ◽  
Priyanka Gangwar ◽  
Ashok K. Parihar ◽  
...  

2015 ◽  
Vol 33 (1) ◽  
pp. 20-28 ◽  
Author(s):  
Juan De la Cruz Jiménez ◽  
Juan Andrés Cardoso ◽  
David Arango-Londoño ◽  
Gerhard Fischer ◽  
Idupulapati Rao

As a consequence of global warming, rainfall is expected to increase in several regions around the world. This, together with poor soil drainage, will result in waterlogged soil conditions. <em>Brachiaria</em> grasses are widely sown in the tropics and, these grasses confront seasonal waterlogged conditions. Several studies have indicated that an increase in nutrient availability could reduce the negative impact of waterlogging. Therefore, an outdoor study was conducted to evaluate the responses of two <em>Brachiaria</em> sp. grasses with contrasting tolerances to waterlogging, <em>B. ruziziensis </em>(sensitive) and <em>B. humidicola</em> (tolerant), with two soil fertility levels. The genotypes were grown with two different soil fertilization levels (high and low) and under well-drained or waterlogged soil conditions for 15 days. The biomass production, chlorophyll content, photosynthetic efficiency, and macro- (N, P, K, Ca, Mg and S) and micronutrient (Fe, Mn, Cu, Zn and B) contents in the shoot tissue were determined. Significant differences in the nutrient content of the genotypes and treatments were found. An increase of redoximorphic elements (Fe and Mn) in the soil solution occurred with the waterlogging. The greater tolerance of <em>B. humidicola</em> to waterlogged conditions might be due to an efficient root system that is able to acquire nutrients (N, P, K) and potentially exclude phytotoxic elements (Fe and Mn) under waterlogged conditions.  A high nutrient availability in the waterlogged soils did not result in an improved tolerance for <em>B. ruziziensis</em>. The greater growth impairment seen in the <em>B. ruziziensis</em> with high soil fertility and waterlogging (as opposed to low soil fertility and waterlogging) was possibly due to an increased concentration of redoximorphic elements under these conditions.


JSFA reports ◽  
2021 ◽  
Author(s):  
Subham C. Mondal ◽  
Nirmali Gogoi ◽  
Dhrubajyoti Nath ◽  
Anjuma Gayan

Sign in / Sign up

Export Citation Format

Share Document