The rôle of aluminium in soil infertility and toxicity

1926 ◽  
Vol 16 (4) ◽  
pp. 616-631 ◽  
Author(s):  
F. Hardy

1. The main results of soil investigations on the rôle of aluminium in soil infertility are reviewed, with particular regard to the physicochemical principles involved.2. Magistad's conclusion that soils or other nutrient media whose reaction values lie within the range pH 4·7 and pH 8·5 do not contain aluminium in soluble form, and are probably therefore not toxic to plants, is discussed in the light of modern knowledge of the properties of hydrous alumina and its peptisation phenomena.3. Dialysis experiments which have led to this generalisation are criticised on the grounds that they do not take into account the disturbing effect of dialysis on hydrous colloidal systems, and that dialyser membranes do not simulate plant-cell membranes.4. Aluminium may possibly penetrate plant-root cells, and, under certain conditions, may be translocated, within the plant body, in at least four different forms, namely, (a) simple ions, (b) more complex colloidal electrolytes, (c) co-ordinated complex anions, and (d) organo-compounds. These may conceivably be interconvertible.5. Aluminium appears to exert true toxic effect only when presented to plant roots as simple ions, or as the more soluble colloidal electrolytes. Apparently, the degree of toxicity varies for different plant species.6. The reaction conditions of nutrient media and of plant saps doubtless largely decide the form in which aluminium occurs therein. At reactions approaching the isoelectric point of hydrous alumina, toxic effects may never be exerted, although the assignation of a strict reaction-range applicable to all soils or nutrient media, and to all plant species, is probably inadmissible.7. Non-toxic forms of aluminium may apparently accumulate under certain conditions at definite tissue regions of certain plants, and may disturb their metabolic processes, disposing the plants to certain diseases.8. Within the reaction-range at which toxic aluminous solutes cannot exist in soils or other culture media, hydrogen-ions may exert controlling influence on plant growth, and may thus be of major significance in natural plant distribution, and in the behaviour of plants growing in normal agricultural soils.

Author(s):  
Tania Ho-Plágaro ◽  
Raúl Huertas ◽  
María I Tamayo-Navarrete ◽  
Elison Blancaflor ◽  
Nuria Gavara ◽  
...  

Abstract The formation of arbuscular mycorrhizal (AM) symbiosis requires plant root host cells to undergo major structural and functional reprogramming in order to house the highly branched AM fungal structure for the reciprocal exchange of nutrients. These morphological modifications are associated with cytoskeleton remodelling. However, molecular bases and the role of microtubules (MTs) and actin filament dynamics during AM formation are largely unknown. In this study, the tomato tsb gene, belonging to a Solanaceae group of genes encoding MT-associated proteins for pollen development, was found to be highly expressed in root cells containing arbuscules. At earlier stages of mycorrhizal development, tsb overexpression enhanced the formation of highly developed and transcriptionally active arbuscules, while tsb silencing hampers the formation of mature arbuscules and represses arbuscule functionality. However, at later stages of mycorrhizal colonization, tsb OE roots accumulate fully developed transcriptionally inactive arbuscules, suggesting that the collapse and turnover of arbuscules might be impaired by TSB accumulation. Imaging analysis of the MT cytoskeleton in cortex root cells overexpressing tsb revealed that TSB is involved in MT-bundling. Taken together, our results provide unprecedented insights into the role of novel MT-associated protein in MT rearrangements throughout the different stages of the arbuscule life cycle.


1973 ◽  
Vol 26 (5) ◽  
pp. 1109 ◽  
Author(s):  
EJ Cother ◽  
DM Griffin

Chlamydospores of P. drechsleri Tucker were observed in the' roots of six genera of artificially inoculated plants that are common weed species in eastern and southern Australia. Zoospore attraction to the roots of three plant species and subsequent sporulation were demonstrated. The activity of this fungus in agricultural soils is discussed.


2021 ◽  
Author(s):  
Zhiwen Chen ◽  
Jianguo Zhao ◽  
Jun Qiao ◽  
Weijia Li ◽  
Sai Ge ◽  
...  

Abstract To explore the effects of graphene on plant root growth and development, 25 mg/L graphene were used to treat the seedling roots of 48 plant species. These results showed that the total root length of the plants was decreased when cultured by hydroponics method. Whereas the total root length of plant species cultured by soil showed different growth effects, among which the ratio of promotion effect was 69.77%, the ratio of inhibition effect was 11.63% and the no-effect ratio was 18.60%. To gain insights into the molecular mechanisms by which graphene presents different growth effects on the root length, we performed RNA-seq for 32 plant roots treated with 25 mg/L graphene. We totally identified 90,259 DEGs in 32 plant species, among which 55,537 were graphene-induced and 34,722 were graphene-repressed. KEGG pathway enrichment analysis indicated that 43 pathways were assigned to these enriched differentially expressed genes in response to the graphene treatment. Top enriched pathways include starch and sucrose metabolism, glycolysis/gluconeogenesis, pyruvate metabolism, the citrate cycle (TCA cycle), phenylpropanoid biosynthesis, glutathione metabolism, endocytosis, peroxisome etc. The gene expressions of these pathway were induced or repressive in plant roots showing promotion or inhibitory effects, respectively. Accumulation of antioxidant enzyme as well as enhanced respiration might lead to the increasing plant root length. In addition, transcriptome and TEM data showed that graphene enters plant root cells by endocytosis. These results uncovered molecular level influences of graphene on plant roots development.


2017 ◽  
Vol 44 (10) ◽  
pp. 955 ◽  
Author(s):  
Igor M. Andreev

Symbiosomes are organelle-like compartments responsible for nitrogen fixation in infected nodule cells of legumes, which are formed as a result of symbiotic association of soil bacteria rhizobia with certain plant root cells. They are virtually the only source of reduced nitrogen in the Earth’s biosphere, and consequently, are of great importance. It has been proven that the functioning of symbiosomes depends to a large extent on the transport of various metabolites and ions – most likely including Ca2+ – across the symbiosome membrane (SM). Although it has been well established that this cation is involved in the regulation of a broad spectrum of processes in cells of living organisms, its role in the functioning of symbiosomes remains obscure. This is despite available data indicating both its transport through the SM and accumulation within these compartments. This review summarises the results obtained in the course of studies on the given aspects of calcium behaviour in symbiosomes, and on this basis gives a possible explanation of the proper functional role in them of Ca2+.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 931
Author(s):  
Mayra M. Ferrari Ferrari Barbosa ◽  
Alex Issamu Kanno ◽  
Leonardo Paiva Farias ◽  
Mariusz Madej ◽  
Gergö Sipos ◽  
...  

Innate immune cells such as monocytes and macrophages are activated in response to microbial and other challenges and mount an inflammatory defensive response. Exposed cells develop the so-called innate memory, which allows them to react differently to a subsequent challenge, aiming at better protection. In this study, using human primary monocytes in vitro, we have assessed the memory-inducing capacity of two antigenic molecules of Schistosoma mansoni in soluble form compared to the same molecules coupled to outer membrane vesicles of Neisseria lactamica. The results show that particulate challenges are much more efficient than soluble molecules in inducing innate memory, which is measured as the production of inflammatory and anti-inflammatory cytokines (TNFα, IL-6, IL-10). Controls run with LPS from Klebsiella pneumoniae compared to the whole bacteria show that while LPS alone has strong memory-inducing capacity, the entire bacteria are more efficient. These data suggest that microbial antigens that are unable to induce innate immune activation can nevertheless participate in innate activation and memory when in a particulate form, which is a notion that supports the use of nanoparticulate antigens in vaccination strategies for achieving adjuvant-like effects of innate activation as well as priming for improved reactivity to future challenges.


2021 ◽  
Vol 30 (2) ◽  
pp. 365-384
Author(s):  
Elena Tello-García ◽  
Nancy Gamboa-Badilla ◽  
Enrique Álvarez ◽  
Laura Fuentes ◽  
Corina Basnou ◽  
...  

2021 ◽  
Author(s):  
Johanna Yletyinen ◽  
George L. W. Perry ◽  
Olivia R. Burge ◽  
Norman W. H. Mason ◽  
Philip Stahlmann‐Brown

Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 534
Author(s):  
Pavel Samec ◽  
Jiří Volánek ◽  
Miloš Kučera ◽  
Pavel Cudlín

Plant distribution is most closely associated with the abiotic environment. The abiotic environment affects plant species’ abundancy unevenly. The asymmetry is further deviated by human interventions. Contrarily, soil properties preserve environmental influences from the anthropogenic perturbations. The study examined the supra-regional similarities of soil effects on plant species’ abundance in temperate forests to determine: (i) spatial relationships between soil property and forest-plant diversity among geographical regions; (ii) whether the spatial dependencies among compared forest-diversity components are influenced by natural forest representation. The spatial dependence was assessed using geographically weighted regression (GWR) of soil properties and plant species abundance from forest stands among 91 biogeographical regions in the Czech Republic (Central Europe). Regional soil properties and plant species abundance were acquired from 7550 national forest inventory plots positioned in a 4 × 4 km grid. The effect of natural forests was assessed using linear regression between the sums of squared GWR residues and protected forest distribution in the regions. Total diversity of forest plants is significantly dependent on soil-group representation. The soil-group effect is more significant than that of bedrock bodies, most of all in biogeographical regions with protected forest representation >50%. Effects of soil chemical properties were not affected by protected forest distribution. Spatial dependency analysis separated biogeographical regions of optimal forest plant diversity from those where inadequate forest-ecosystem diversity should be increased alongside soil diversity.


Sign in / Sign up

Export Citation Format

Share Document