Traits associated with high yield in barley in low-rainfall environments

1991 ◽  
Vol 116 (1) ◽  
pp. 23-36 ◽  
Author(s):  
E. Acevedo ◽  
P. Q. Craufurd ◽  
R. B. Austin ◽  
P. Pérez-Marco

SUMMARYResults are reported from nine field trials carried out in 1985/86 and 1986/87 aimed at identifying plant traits which are associated with high yield in barley in low-rainfall Mediterranean areas. Thirtyseven two-rowed and 35 six-rowed genotypes, representing the known diversity in traits considered to be useful, were compared in trials at three sites differing in expected annual rainfall (212–328 mm) in northern Syria, and in droughted and irrigated trials at Cambridge, UK. Yield, its components and other morphological and developmental traits were measured and correlations calculated.Grain yields of the two- and six-rowed groups of genotypes were similar at all sites except in the irrigated trial in Cambridge, where the six-rowed genotypes gave the highest yield. Aside from the known difference in number of ears and number of grains/ear between two- and six-rowed genotypes, the simple correlations between grain yield and measured traits suggested that important traits for high yield in two- and six-rowed genotypes in dry environments were prostrate habit, vigorous seedling growth, good ground cover, early ear emergence, many ears/m2 and large grains. In the two-rowed genotypes, short stature and a short grain-filling period were also important, while in the six-rowed genotypes, tall stature, high straw yield, many grains/ear and long peduncles were important. Correlations of these characters with an index of drought susceptibility and with yield adjusted for yield potential and date of ear emergence supported the conclusions based on the simple correlations.The physiological basis of the correlated traits is discussed and the implications for breeding are considered.

2008 ◽  
Vol 59 (4) ◽  
pp. 354 ◽  
Author(s):  
J. T. Christopher ◽  
A. M. Manschadi ◽  
G. L. Hammer ◽  
A. K. Borrell

Water availability is a key limiting factor in wheat production in the northern grain belt of Australia. Varieties with improved adaptation to such conditions are actively sought. The CIMMYT wheat line SeriM82 has shown a significant yield advantage in multi-environment screening trials in this region. The objective of this study was to identify the physiological basis of the adaptive traits underpinning this advantage. Six detailed experiments were conducted to compare the growth, development, and yield of SeriM82 with that of the adapted cultivar, Hartog. The experiments were undertaken in field environments that represented the range of moisture availability conditions commonly encountered by winter crops grown on the deep Vertosol soils of this region. The yield of SeriM82 was 6–28% greater than that of Hartog, and SeriM82 exhibited a stay-green phenotype by maintaining green leaf area longer during the grain-filling period in all environments where yield was significantly greater than Hartog. However, where the availability of deep soil moisture was limited, SeriM82 failed to exhibit significantly greater yield or to express the stay-green phenotype. Thus, the stay-green phenotype was closely associated with the yield advantage of SeriM82. SeriM82 also exhibited higher mean grain mass than Hartog in all environments. It is suggested that small differences in water use before anthesis, or greater water extraction from depth after anthesis, could underlie the stay-green phenotype. The inability of SeriM82 to exhibit stay-green and higher yield where deep soil moisture was depleted indicates that extraction of deep soil moisture is important.


2020 ◽  
Vol 8 (1) ◽  
pp. 387
Author(s):  
Denise Maria Grzegozewski ◽  
Elizabeth Giron Cima ◽  
Miguel Angel Uribe-Opazo ◽  
Luciana Pagliosa Carvalho Guedes ◽  
Jerry Adriani Johann

In this work, the aim was to evaluate the existence of spatial association of the municipal average official soybean yield (t ha-1) with agrometeorological data and vegetation indices. The information was observed by ten-day periods, in crop years 2010/2011, 2011/2012 and 2012/2013 in the State of Paraná. Local univariate spatial correlation (LISA index), as well as global bivariate correlation (L statistics) were calculated. With this study, we identified neighboring municipalities with high yield in the West as well as municipalities that are located with low-low yield Northwestern, showing positive spatial autocorrelation (IMG=1), significative (p-value < 0.05). In addition, there were differences between seeding times in different regions, and climate irregularity during flowering periods and grain filling in crop year 2011/2012 throughout the state, which caused a large drop in production in all municipalities of the state of Paraná. The analysis of local spatial association showed that in the three crop years, the Northwest region presented a significant low yield potential of soybean (p-value < 0.05). In addition, it was observed that the period from the 3rd ten-day period of October to the 2nd ten-day period of January was essential for the soybean cycle in the different regions of the state, since this period encompasses the critical phases of crop. Differences were also observed between the crop years studied, regarding the agrometeorological variables, which affected soybean yield mainly in the Western region of Paraná – Brazil.


2009 ◽  
Vol 89 (1) ◽  
pp. 1-10 ◽  
Author(s):  
P. G. Luo ◽  
H. Y. Zhang ◽  
K. Shu ◽  
X. H. Wu ◽  
H. Q. Zhang ◽  
...  

Rye (Secale cereale L.) chromosome arm 1RS in the wheat (Triticum aestivum L.) genetic background has potential significance for yield improvement without affecting its resistance to several diseases. A new wheat cultivar, Chuannong17 (CN17), carrying the wheat-rye 1BL/1RS translocated chromosome, exhibited “stay green” phenotypes. To determine the genetic behavior and physiological effect, MY11, CN17, BC1F1, and F2 populations of MY11/CN17 were grown in the normal wheat growing seasons in 2004–2005 and 2005–2006. Analysis of photosynthetic parameters showed that the coordinate increase of net photosynthetic rate (Pn), stomatal conductance (Gs) and flag leaf area duration from anthesis to maturation (D2) would be the physiological basis of the high yield potential of the 1BL/1RS translocation (CN17). The analysis for morphological indices proposed that the smaller leaf length (Ll), flag leaf width (Lw) and angle between stem and flag leaf (A) would be responsible for the morphological basis of the high yield potential. Analysis of the relationship between the yield and physiological indices suggested that the coordinate increase of source, the partitioning of assimilate from source to sink, and the sink strength was the material basis of the high yield potential. These results afforded some persuasive evidence to support the idea that wheat cultivar CN17 also shows a coordinate relationship between physiology and morphology and is indeed functionally a “stay green” cultivar. The results show that exploitation of a foreign chromosome or chromosome arm such as 1RS to develop “stay green” genotype cultivars in wheat breeding has the potential to increase yields. Key words: 1BL/1RS translocated chromosome, photosynthesis, physiological genetic effect, stay green, wheat


Genetika ◽  
2017 ◽  
Vol 49 (1) ◽  
pp. 297-311
Author(s):  
Gaffar Al-Hadi ◽  
Rafiqul Islam ◽  
Abdul Karim ◽  
Tofazzal Islam

Soybean is a promising oilseed crop in rice-based cropping systems in South and Southeast Asia. In spite of immense scope of its expansion, the crop is not being popular to the farmers because of poor yield of the existing cultivars. Therefore, this study evaluated eighty-soybean genotypes of diverse growth habits with a view to searching genotype(s) of desirable morpho-physiological characters and high yield potential. Sixteen quantitative plant traits were evaluated to classify the genotypes into different groups using various multivariate methods. A wide range of variation was found in almost all qualitative plant traits. The study reveals that plants tend to become taller as the phenological cycle is longer. Seed yield was the product of the number of pods per plant, pod weight and seeds per pod. The first three components of principal component analysis explained 75% of the total variations of the soybean genotypes. Using Dendrogram from cluster analysis, the genotypes were grouped into six clusters. The maximum number of genotypes was concentrated in cluster 5 followed by clusters 4. The phenology, plant height, the number of pods and seed yield were the important discriminating variables in grouping the genotypes. The number of pods per plant displayed the principal role in explaining the maximum variance in the genotypes. The clustering pattern of the genotypes revealed that the genotypes under cluster 2 and cluster 6 were long statures, late maturing and produced higher seed yield. The genotype G00003 under cluster 2 is the best entry giving the highest seed yield. From cluster 6, the genotype G00209 could be the better choice for much better seed yield. The cluster 3 genotypes were comparatively early maturing and gave reasonable yield. It is concluded that the genotypes under clusters 2 and 6 and 3 can be important resources for developing a high yielding variety and sustainability of growing soybean in the subtropical conditions.


2011 ◽  
Vol 46 (2) ◽  
pp. 174-181 ◽  
Author(s):  
Ana Marjanović-Jeromela ◽  
Nevena Nagl ◽  
Jelica Gvozdanović-Varga ◽  
Nikola Hristov ◽  
Ankica Kondić-Špika ◽  
...  

The objective of this study was to assess genotype by environment interaction for seed yield per plant in rapeseed cultivars grown in Northern Serbia by the AMMI (additive main effects and multiplicative interaction) model. The study comprised 19 rapeseed genotypes, analyzed in seven years through field trials arranged in a randomized complete block design, with three replicates. Seed yield per plant of the tested cultivars varied from 1.82 to 19.47 g throughout the seven seasons, with an average of 7.41 g. In the variance analysis, 72.49% of the total yield variation was explained by environment, 7.71% by differences between genotypes, and 19.09% by genotype by environment interaction. On the biplot, cultivars with high yield genetic potential had positive correlation with the seasons with optimal growing conditions, while the cultivars with lower yield potential were correlated to the years with unfavorable conditions. Seed yield per plant is highly influenced by environmental factors, which indicates the adaptability of specific genotypes to specific seasons.


Foods ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 778
Author(s):  
Francesco Giunta ◽  
Simona Bassu ◽  
Marina Mefleh ◽  
Rosella Motzo

The growing interest in old durum wheat cultivars, due to enhanced consumer attention on healthy, traditional products and low-input agricultural systems, partly relies on their different quality characteristics compared to modern cultivars. Nine Italian durum wheat cultivars from different breeding periods were compared in two late-sown (January) field trials in order to subject their grain filling period to high temperatures similar to those expected in the future. Late sowing moved anthesis forward by about 10 days and increased the mean temperature during grain filling by 1.3 °C compared to that obtained when using the common sowing period of November–December. In these conditions, old cultivars were on average less productive than modern ones (2.36 vs. 3.54 tons ha−1, respectively), had a higher protein percentage (13.8% vs. 11.1%), a lower gluten index (24.3% vs. 56.3%), and a lower alveographic W (baking strength) (64 vs. 100 J 10−4). The differences were partly associated to variations in the gliadins:glutenins ratio. It depended on the genotype whether the grain and semolina protein percentage and gluten strength compensated one another in terms of alveographic indices to give the dough a strength similar to that of the modern cultivars in the range of moderately high temperatures, which resulted from delayed sowing. Further studies aimed at exploring the genetic variability of quality traits in the large genetic pool represented by the several Italian old and intermediate durum wheat cultivars still available are therefore advisable.


1989 ◽  
Vol 69 (1) ◽  
pp. 61-69 ◽  
Author(s):  
KEITH G. BRIGGS ◽  
GREGORY J. TAYLOR ◽  
IAN STURGES ◽  
JOHN HODDINOTT

Twenty-eight spring wheat (Triticum aestivum) cultivars were tested for tolerance to aluminum (Al) using solution culture techniques. Fourteen of these cultivars were also grown in the field under two different management levels, Conventional and Intensive Crop Management (ICM), to determine maximum yield potentials in the Edmonton region and to determine if individual cultivars respond differently to management levels on high fertility fallow conditions. Based upon a root weight index (RWI), seven of the 28 spring wheat cultivars tested (K.Kongoni, PT741, K.Nyumbu, PT726, Norquay, PF7748, Maringa) were more tolerant to Al than the winter wheat standard for Al tolerance, Atlas 66. The winter wheat standard for Al sensitivity, Scout 66, ranked most sensitive to Al, but 11 spring wheat cultivars were equally sensitive (Lancer, Wildcat, Columbus, Park, Bluesky, Kenyon, Benito, BW92, Neepawa, Conway, Katepwa). In the field, cultivars varied in yield potential and days to maturity in both the Conventional and ICM treatments; however, ICM provided no additional benefit in terms of yield. Six genotypes (Bluesky, Norquay, Oslo, PT726, PT741, PT742) were significantly higher yielding than Neepawa and matured as early as Park. Six of the nine highest yielding cultivars from the field trials had Al tolerance ratings (RWI values) greater than 0.80 (80% of control), while five Canadian Western Red Spring (CWRS) cultivars, the lowest yielding from the field trials, had RWI values less than or equal to 0.43. The reason for the apparent association between high yield potential and tolerance to Al is unknown.Key words: wheat, Triticum aestivum, aluminum tolerance, high yield, early maturity, intensive crop management


1976 ◽  
Vol 87 (1) ◽  
pp. 113-122 ◽  
Author(s):  
R. A. Fischer ◽  
D. R. Laing

SummaryExperiments with wheat describing the effects of crop thinning on grain yield and its components are presented. These were carried out over 5 years in northwest Mexico, using a high-yielding dwarf spring-wheat variety (Triticum aestivum cv. ‘Yecora 70’) grown under irrigation and high fertility. It was shown that thinning largely relieved competition for light, thus increasing photosynthate levels in the plants remaining after thinning. The objective was to evaluate this simple technique as a guide to understanding when grain yield and its components were determined and, in particular, the extent to which post-anthesis photosynthate supply limited yield.There were major responses in grain yield with thinning between about 50 and 100 days after seeding, and in number of spikes and of grains with thinning between 50 and 90 days (50% anthesis was reached at 87 days). Number of spikelets per spike showed small responses to early thinning (before 50 days). Number of grains/spikelet and kernel weight snowed positive responses to thinning between 65 and 90 days, and 90 and 115 days, respectively. These results agreed with adjacent shading and CO2 fertilization studies but, because of certain difficulties in interpretation of responses, pre-anthesis thinning was not considered a very useful technique.Anthesis thinning was carried out on 21 separate crops: the kernel weight increase relative to the unthinned control ranged from 6 to 41%, averaging 20%. Anthesis thinning led to increases in stem weight during the first half of the grain filling period, followed by increases in grain growth rate in the latter half. The increase in final kernel weight was greater with higher temperature and lower radiation during grain filling; these variables explained 64% of the variation in kernel weight response. It is suggested that the kernel weight response does indicate the degree of photosynthate limitation during grain filling, showing reasonable agreement with adjacent shading and CO2 fertilization studies. It was concluded that anthesis thinning, because of its relative simplicity, is a useful technique. Implications for yield improvement in Yecora of the results provided by this technique are discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nestor Kippes ◽  
Helen Tsai ◽  
Meric Lieberman ◽  
Darrin Culp ◽  
Brian McCormack ◽  
...  

AbstractMint oil is a key source of natural flavors with wide industrial applications. Two unbalanced polyploid cultivars named Native (Mentha Spicata L) and Scotch (M. × gracilis Sole) are the main producers of spearmint type oil, which is characterized by high levels of the monoterpenes (−)-carvone and (−)-limonene. These cultivars have been the backbone of spearmint oil production for decades, while breeding and improvement remained largely unexplored, in part, due to sterility in cultivated lines. Here we show that sexual breeding at the diploid level can be leveraged to develop new varieties that produce spearmint type oil, along with the improvement of other important traits. Using field trials and GC-FID oil analysis we characterized plant materials from a public germplasm repository and identified a diploid accession that exhibited 89.5% increase in oil yield, compared to the industry standard, and another that produces spearmint type oil. Spearmint-type oil was present at high frequency in a segregating F2 population (32/160) produced from these two accessions. Field-testing of ten of these F2 lines showed segregation for oil yield and confirmed the production of spearmint-type oil profiles. Two of these lines combined high yield and spearmint-type oil with acceptable analytic and sensory profiles. These results demonstrate that spearmint-type oil can be produced in a diploid background with high yield potential, providing a simpler genetic system for the development of improved spearmint varieties.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yao Deng ◽  
Yongchao Yu ◽  
Yuxiang Hu ◽  
Li Ma ◽  
Yan Lin ◽  
...  

Large panicle rice cultivars often fail to fulfill their high-yield potential due to the poor grain filling of inferior spikelets (IS), which appears as initially stagnant development and low final seed weight. Understanding the mechanism of the initial stagnancy is important to improve IS grain filling. In this study, superior spikelets (SS) were removed from two homozygous japonica rice varieties (W1844 and CJ03) with the same sink capacity in an attempt to force photosynthate transport to the IS. The results showed that SS removal increased the grain weight, sucrose content, starch accumulation, and endogenous IAA levels of IS during the initial grain-filling stage. SS removal also improved the patterns of vascular cells in the dorsal pericarp and the expression levels of genes involved in sucrose transport (OsSUTs and OsSWEETs) and IAA metabolism (OsYUCs and OsPINs). Exogenous IAA application advanced the initiation of grain filling by increasing the sucrose content and the gene expression levels of sucrose transporters. These results indicate that auxin may act like a signal substance and play a vital role in initial grain filling by regulating dorsal vascular cell development and sucrose phloem unloading into caryopsis.


Sign in / Sign up

Export Citation Format

Share Document