Some long-term effects of slurry on grassland

1987 ◽  
Vol 108 (3) ◽  
pp. 529-541 ◽  
Author(s):  
P. Christie

SummaryA field experiment is described in which three rates of pig and cow slurry were applied to a ryegrass sward over a period of 16 years. The experiment included control plots and plots receiving fertilizer supplying 200 kg N, 32 kg P and 160 kg K/ha per year.The slurry nutrient concentrations were similar to published values. Pig slurry was more variable than cow slurry and both varied significantly from year to year. Slurry was applied at 50, 100 or 200 m3/ha per year, with each rate divided into three equal applications.Even the highest slurry application rate did not depress herbage yield, which showed a typical response curve to the amount of soluble nitrogen applied. The ammoniumnitrogen content of slurry (61% on average) gave an adequate measure of its effect on herbage yield when it was applied three times per year in spring and summer.Recovery of phosphorus in the herbage averaged 30% from pig slurry, 40% from cow slurry and 66% from-fertilizer. Pig slurry supplied more phosphorus than did cow slurry, and herbage phosphorus content was significantly correlated with the amount applied. Much of the slurry phosphorus may have been organically bound and not available to plants in the short term.Recovery of potassium from pig slurry and fertilizer was nearly 90% and from cow slurry about 70%. Cow slurry supplied potassium in excess of crop requirements so that it accumulated in the soil under the largest dressing. Soil phosphorus reserves declined under the smallest dressing of cow slurry but were maintained at higher application rates. The pig slurry produced a marked accumulation of phosphorus under the largest dressing. The substantial accumulations of phosphorus and potassium from pig and cow slurry respectively gave marked penetration of the soil below 10 cm depth only at the highest application rate. The data suggest that at rates typical of farm practice significant losses of phosphorus and potassium from the rooting zone would be unlikely to occur.The main invading plant species were Agrostis stolonifera L. and Poa spp. Small slurry dressings produced a similar botanical composition to that of plots given fertilizer. Increasing slurry application rates decreased the proportion of L. perenne and increased that of A. stolonifera but only under the largest dressing did L. perenne fall to a small proportion of the sward and A. stolonifera become very dominant. L. perenne made maximum contribution to herbage dry-matter yield early in the season while the proportion of A. stolonifera increased as the season progressed.Under these conditions even extremely large slurry dressings did not depress herbage yield and may not necessarily have reduced herbage quality despite marked changes in sward botanical composition.

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1339
Author(s):  
Cassidy M. Buchanan ◽  
James A. Ippolito

Overgrazed rangelands can lead to soil degradation, yet long-term land application of organic amendments (i.e., biosolids) may play a pivotal role in improving degraded rangelands in terms of soil health. However, the long-term effects on soil health properties in response to single or repeated, low to excessive biosolids applications, on semi-arid, overgrazed grasslands have not been quantified. Using the Soil Management Assessment Framework (SMAF), soil physical, biological, chemical, nutrient, and overall soil health indices between biosolids applications (0, 2.5, 5, 10, 21, or 30 Mg ha−1) and application time (single: 1991, repeated: 2002) were determined. Results showed no significant changes in soil physical and nutrient health indices. However, the chemical soil health index was greater when biosolids were applied at rates <30 Mg ha−1 and within the single compared to repeated applications. The biological soil health index was positively affected by increasing biosolids application rates, was overall greater in the repeated as compared to the single application, and was maximized at 30 Mg ha−1. The overall soil health index was maximized at rates <30 Mg ha−1. When all indices were combined, and considering past plant community findings at this site, overall soil health appeared optimized at a biosolids application rate of ~10 Mg ha−1. The use of soil health tools can help determine a targeted organic amendment application rate to overgrazed rangelands so the material provides maximum benefits to soils, plants, animals, and the environment.


2020 ◽  
Vol 66 (No. 9) ◽  
pp. 468-476
Author(s):  
Miroslav Jursík ◽  
Martin Kočárek ◽  
Michaela Kolářová ◽  
Lukáš Tichý

Six sunflower herbicides were tested at two application rates (1N and 2N) on three locations (with different soil types) within three years (2015–2017). Efficacy of the tested herbicides on Chenopodium album increased with an increasing cation exchange capacity (CEC) of the soil. Efficacy of pendimethalin was 95%, flurochloridone and aclonifen 94%, dimethenamid-P 72%, pethoxamid 49% and S-metolachlor 47%. All tested herbicides injured sunflower on sandy soil (Regosol) which had the lowest CEC, especially in wet conditions (phytotoxicity 27% after 1N application rate). The highest phytotoxicity was recorded after the application of dimethenamid-P (19% at 1N and 45% at 2N application rate). Main symptoms of phytotoxicity were leaf deformations and necroses and the damage of growing tips, which led to destruction of some plants. Aclonifen, pethoxamid and S-metolachlor at 1N did not injure sunflower on the soil with the highest CEC (Chernozem) in any of the experimental years. Persistence of tested herbicides was significantly longer in Fluvisol (medium CEC) compared to Regosol and Chernozem. Dimethenamid-P showed the shortest persistence in Regosol and Chernozem. The majority of herbicides was detected in the soil layer 0–5 cm in all tested soils. Vertical transport of herbicides in soil was affected by the herbicide used, soil type and weather conditions. The highest vertical transport was recorded for dimethenamid-P and pethoxamid (4, resp. 6% of applied rate) in Regosol in the growing season with high precipitation.  


Author(s):  
Subin Kalu ◽  
Gboyega Nathaniel Oyekoya ◽  
Per Ambus ◽  
Priit Tammeorg ◽  
Asko Simojoki ◽  
...  

AbstractA 15N tracing pot experiment was conducted using two types of wood-based biochars: a regular biochar and a Kon-Tiki-produced nutrient-enriched biochar, at two application rates (1% and 5% (w/w)), in addition to a fertilizer only and a control treatment. Ryegrass was sown in pots, all of which except controls received 15N-labelled fertilizer as either 15NH4NO3 or NH415NO3. We quantified the effect of biochar application on soil N2O emissions, as well as the fate of fertilizer-derived ammonium (NH4+) and nitrate (NO3−) in terms of their leaching from the soil, uptake into plant biomass, and recovery in the soil. We found that application of biochars reduced soil mineral N leaching and N2O emissions. Similarly, the higher biochar application rate of 5% significantly increased aboveground ryegrass biomass yield. However, no differences in N2O emissions and ryegrass biomass yields were observed between regular and nutrient-enriched biochar treatments, although mineral N leaching tended to be lower in the nutrient-enriched biochar treatment than in the regular biochar treatment. The 15N analysis revealed that biochar application increased the plant uptake of added nitrate, but reduced the plant uptake of added ammonium compared to the fertilizer only treatment. Thus, the uptake of total N derived from added NH4NO3 fertilizer was not affected by the biochar addition, and cannot explain the increase in plant biomass in biochar treatments. Instead, the increased plant biomass at the higher biochar application rate was attributed to the enhanced uptake of N derived from soil. This suggests that the interactions between biochar and native soil organic N may be important determinants of the availability of soil N to plant growth.


2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 26-27
Author(s):  
Caroline Chappell ◽  
Landon Marks ◽  
Katie Mason ◽  
Mary K Mullenix ◽  
Sandra L Dillard ◽  
...  

Abstract A 2-yr study was conducted at Black Belt Research and Extension Center in Marion Junction, AL, to evaluate the effect of nitrogen (N) fertilizer application rate on forage production characteristics, nutritive value, and animal performance of beef heifers grazing a mixture of native warm-season grasses (NWSG) including big bluestem, little bluestem, and indiangrass. Six, two-hectare plots were randomly assigned to one of two treatments (0 or 67 kg N ha-1 applied in early April; n = 3 replications per treatment). Paddocks were continuously stocked with four weaned Angus × Simmental beef heifers (initial BW 288 ± 7 kg) from late May/early June through mid-to-late August during 2018 (73 grazing d) and 2019 (70 grazing d), respectively. Put-and-take cattle were used to manage forage to a target of 38 cm. Forage mass and canopy heights were collected every two weeks during the trial. Visual ground cover ratings, canopy light interception, and botanical composition were measured at the beginning and end of the trial in each year. Hand-plucked samples were collected every two weeks during the grazing trial to determine forage nutritional value. Data were analyzed using the PROC MIXED procedure in SAS 9.4, and differences were declared significant when P ≤ 0.05. Nitrogen fertilized NWSG had greater crude protein (P &lt; 0.0001), sward heights (P = 0.0003), and canopy light interception at the beginning of the season (P = 0.0049) compared to non-fertilized paddocks. However, there were no differences (P ≥ 0.05) among N-fertility treatments for mean forage mass, heifer ADG, or BCS across the 2-yr study. Botanical composition data indicated that indiangrass decreased from 64% to 61% (P = 0.0022) and weed pressure increased from 11% to 15% (P = 0.0064) across the summer grazing season. Canopy light interception decreased by 51% from early June to August in fertilized NWSG and 26% in unfertilized paddocks, respectively. These data illustrate that NWSG systems may provide a viable grazing system in the summer months under reduced N inputs.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1368
Author(s):  
Wenzheng Tang ◽  
Wene Wang ◽  
Dianyu Chen ◽  
Ningbo Cui ◽  
Haosheng Yang ◽  
...  

In order to meet the growing food demand of the global population and maintain sustainable soil fertility, there is an urgent need to optimize fertilizer application amount in agricultural production practices. Most of the existing studies on the optimal K rates for apple orchards were based on case studies and lack information on optimizing K-fertilizer management on a regional scale. Here, we used the method of combining meta-analysis with the K application rate-yield relationship model to quantify and summarize the optimal K rates of the Loess Plateau and Bohai Bay regions in China. We built a dataset based on 159 observations obtained from 18 peer-reviewed literature studies distributed in 15 different research sites and evaluated the regional-scale optimal K rates for apple production. The results showed that the linear plus platform model was more suitable for estimating the regional-scale optimal K rates, which were 208.33 and 176.61 kg K ha−1 for the Loess Plateau and Bohai Bay regions of China, respectively. Compared with high K application rates, the optimal K rates increased K use efficiency by 45.88–68.57%, with almost no yield losses. The optimal K rates also enhanced the yield by 6.30% compared with the low K application rates.


2018 ◽  
Vol 40 (3) ◽  
pp. 304-312 ◽  
Author(s):  
Lais Tessari Perboni ◽  
Dirceu Agostinetto ◽  
Leandro Vargas ◽  
Joanei Cechin ◽  
Renan Ricardo Zandoná ◽  
...  

Abstract: The goals of this study were to evaluate herbicide application rates at different timings for preharvest desiccation of wheat (Trial 1), as well as to evaluate the effect of the timing of herbicide desiccation at preharvest and harvest timing (Trial 2) on yield, germination, and herbicide residue in wheat seed. In Trial 1, treatments consisted of two application rates of glufosinate, glyphosate, paraquat, or paraquat+diuron and a control without application; application time periods were in the milk grain to early dough stage, soft dough to hard dough stage, and hard dough stage. In Trial 2, treatments consisted of different application time periods (milk grain to early dough stage, and soft dough to hard dough stage), different herbicides (glufosinate, 2,4-D+glyphosate, and untreated control), and different harvest times (5, 10 and 15 days after herbicide application). One thousand seeds weight, yield, first and final germination count, and herbicide residue on seeds were evaluated. Preharvest desiccation with paraquat, glufosinate, and 2,4-D+glyphosate at the milk grain to early dough stage reduces wheat yield. Regardless of the herbicide and application rate, application in the milk grain to early dough stage and soft dough to hard dough stage provides greater germination of wheat seeds, except at the lower dose of paraquat. Systemic herbicides accumulate more in wheat seeds.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1136
Author(s):  
Se-Won Kang ◽  
Jin-Ju Yun ◽  
Jae-Hyuk Park ◽  
Ju-Sik Cho

A field experiment was carried out to investigate crop productivity, emissions of carbon dioxide (CO2) and nitrous oxide (N2O), and soil quality of an upland field treated with compost and varying rates of biochar (BC) derived from soybean stalks during crop growing periods in a corn and Chinese cabbage rotation system. Compost was supplemented with BC derived from soybean stalks at varying rates of 5, 10, 15, and 20 t ha−1 (BC5, BC10, BC15, and BC20, respectively); the control (BC0) area was untreated. Our results reveal that crop productivity and emissions of CO2 and N2O varied significantly with the biochar application rate. Moreover, irrespective of the biochar application rate, crop productivity was improved after BC application as compared to the control treatment area, by 11.2–29.3% (average 17.0 ± 8.3%) for corn cultivation and 10.3–39.7% (average 27.8 ± 12.7%) for Chinese cabbage cultivation. Peak emissions of CO2 and N2O were mainly observed in the early period of crop cultivation, whereas low CO2 and N2O emissions were determined during the fallow period. Compared to the control area, significant differences were obtained for CO2 emissions produced by the different biochar application rates for both crops. During the two cropping periods, the overall N2O emission was significantly decreased with BC5, BC10, BC15, and BC20 applications as compared to the control, ranging from 11.1 to 13.6%, 8.7 to 15.4%, 23.1 to 26.0%, and 15.0 to 19.6%, respectively (average 16.9% decrease in the corn crop period and 16.3% in the Chinese cabbage crop period). Soil quality results after the final crop harvest show that bulk density, soil organic carbon (SOC), pH, and cation exchange capacity (CEC) were significantly improved by biochar application, as compared to the control. Taken together, our results indicate that compost application supplemented with biochar is potentially an appropriate strategy for achieving high crop productivity and improving soil quality in upland field conditions. In conclusion, appropriate application of biochar with compost has the concomitant advantages of enriching soil quality for long-term sustainable agriculture and reducing the use of inorganic fertilizers.


2005 ◽  
Vol 83 (12) ◽  
pp. 1622-1629 ◽  
Author(s):  
J.K. Rowntree ◽  
E. Sheffield

The systemic herbicide asulam is used extensively to control the weedy fern bracken ( Pteridium aquilinum (L.) Kuhn). Other ferns were thought to be highly sensitive to asulam exposure, but there has been a dearth of experimental evidence. Eight fern species were exposed to asulam spray at three different application rates or a control of water. Asulam was applied at the recommended field application rate for bracken clearance, and at two further rates corresponding to 10 and 50 m downwind of an aerial spray event. Damage was assessed over two seasons. All ferns tested were severely damaged by exposure to the highest application rate, but sensitivity varied between species. Maximum damage occurred 1 year after spraying, and limited signs of recovery could be seen by the second season. The effects of adding the adjuvant Agral® to applications of asulam were tested on the threatened pteridophyte Pilularia globulifera L. No damage additional to that caused by exposure to asulam was observed. This work supports the view that 50 m buffer zones are sufficient to protect sensitive ferns from the effects of aerial spraying with asulam, provided that drift-reducing nozzles are used and the manufacturer’s application guidelines are observed.


2021 ◽  
Author(s):  
Victor Burgeon ◽  
Julien Fouché ◽  
Sarah Garré ◽  
Ramin Heidarian-Dehkordi ◽  
Gilles Colinet ◽  
...  

&lt;p&gt;The amendment of biochar to soils is often considered for its potential as a climate change mitigation and adaptation tool through agriculture. Its presence in tropical agroecosystems has been reported to positively impact soil productivity whilst successfully storing C on the short&amp;#8201;and long-term. In temperate systems, recent research showed limited to no effect on productivity following recent biochar addition to soils. Its long-term effects on productivity and nutrient cycling have, however, been overlooked yet are essential before the use of biochar can be generalized.&lt;/p&gt;&lt;p&gt;Our study was set up in a conventionally cropped field, containing relict charcoal kiln sites used as a model for century old biochar (CoBC, ~220 years old). These sites were compared to soils amended with recently pyrolyzed biochar (YBC) and biochar free soils (REF) to study nutrient dynamics in the soil-water-plant system. Our research focused on soil chemical properties, crop nutrient uptake and soil solution nutrient concentrations. Crop plant samples were collected over three consecutive land occupations (chicory, winter wheat and a cover crop) and soil solutions gathered through the use of suctions cups inserted in different horizons of the studied Luvisol throughout the field.&lt;/p&gt;&lt;p&gt;Our results showed that YBC mainly influenced the soil solution composition whereas CoBC mainly impacted the total and plant available soil nutrient content. In soils with YBC, our results showed lower nitrate and potassium concentrations in subsoil horizons, suggesting a decreased leaching, and higher phosphate concentrations in topsoil horizons. With time and the oxidation of biochar particles, our results reported higher total soil N, available K and Ca in the topsoil horizon when compared to REF, whereas available P was significantly smaller. Although significant changes occurred in terms of plant available nutrient contents and soil solution nutrient concentrations, this did not transcend in variations in crop productivity between soils for neither of the studied crops. Overall, our study highlights that young or aged biochar behave as two distinct products in terms of nutrient cycling in soils. As such the sustainability of these soils differ and their management must therefore evolve with time.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document