Effects of harvesting programme and sowing date on leaf growth in forage barley in Cyprus

1988 ◽  
Vol 110 (2) ◽  
pp. 353-366
Author(s):  
D. Wilman ◽  
D. N. Droushiotis

SummaryAll combinations of four harvesting treatments and two sowing dates were compared in each of 2 years in field experiments near Nicosia. In one of the years, two levels of applied nitrogen were compared. The harvesting treatments were: (1) a milk-stage cut, (2) a boot-stage cut and a regrowth cut, (3) a grazing-stage cut and a regrowth cut, and (4) three grazing-stage cuts and a regrowth cut. The sowing dates were (1) normal (12 November) and (2) early (15 October), with sufficient irrigation to ensure establishment.Applied nitrogen had virtually no effect on leaf growth, evidently because of high reserves of available nitrogen in the soil. Early sowing increased the rates of leaf emergence, extension and expansion up to the time of the first ‘grazing’ cut (when the first node was showing) and reduced the number of leaves which died in that period. Where growth was uninterrupted to the milk stage, early sowing did not affect the number of leaves produced by a main stem or primary tiller, but increased the longevity of the later leaves. Where there were three ‘grazing’ cuts, early sowing allowed time for the production of more and larger leaf blades, with longer sheaths, between the third 'grazing’ cut and the final harvest.The ‘grazing’ cuts considerably reduced the rates of extension and expansion and the final size of the leaves which emerged soon after a cut. There was good recovery subsequently, however, in rates of extension and expansion and final leaf size, particularly with October sowing.During almost all the period of leaf production on a main stem or primary tiller, several leaves (up to six) were expanding at the same time. The stage, during the period between emergence and death, at which a leaf blade reached its full length was typically half-way between emergence and death. Where growth was uninterrupted, area per leaf blade was positively correlated with both the number of days between the emergence of successive leaves and the number of days between emergence and death.

1980 ◽  
Vol 94 (2) ◽  
pp. 443-453 ◽  
Author(s):  
D. Wilman ◽  
A. A. Mohamed

SummaryThe regrowth of Aberystwyth S. 23 perennial ryegrass, S. 24 perennial ryegrass, S. 59 red fescue and S. 170 tall fescue was studied in field swards, comparing four levels of applied nitrogen, for 8 weeks following a clearing cut. The clearing cuts were in mid-October, mid-February and mid-March in each of 3 years, different plots being used on each occasion.The application of N increased the number of leaf primordia, the number of un-emerged leaves, the rate of leaf emergence and death, leaf blade length, width and weight, sheath length, number of leaves per unit area of ground and proportion of green tissue in total yield. The application of N had little effect on the number of leaves per tiller and tended to reduce weight per unit area of leaf blade. The increase in size, weight and number of leaf blades appeared to be major reasons for the positive effect of applied N on yield, previously reported; and the increase in sheath length contributed to the increase in proportion of yield above 4 cm. Rate of leaf extension was not closely related to yield and was more sensitive to temperature than was yield. Changes during regrowth in blade and sheath length helped to explain changes in weight per tiller, previously reported. The effects of improving weather conditions in late winter/early spring were similar to the effects of applied N: larger, heavier leaf blades, longer sheaths, a taller canopy, a lower proportion of dead material, younger leaves. The length of shoot apex per leaf primordium was relatively constant. Leaves continued to emerge, at a slow rate, in the period December–February. S. 170 had the biggest leaves, particularly in May, and the slowest rate of leaf turnover. Rate of leaf extension was increased by applied N more, on average, in the ryegrasses than in the fescues.


1996 ◽  
Vol 121 (1) ◽  
pp. 6-12
Author(s):  
R. Bruce Carle ◽  
J. Brent Loy

The morphology, growth rate and anatomy of the fused vein trait were characterized in Cucurbita pepo using the inbreds NH2405 (fused vein), NH7210 (moderately fused vein), and NH614 (normal). Morphological analysis showed that the trait is characterized by a partial fusion of the five primary leaf veins. Fusion begins at the distal point of the petiole and extends along the central vein. Branching of the veins is delayed and there is a reduction of the interveinal leaf blade. Consequently, the upper leaf surface appears puckered or wrinkled. Depending on genetic background, the onset of fused vein leaf production starts at the fourth to tenth leaf stage and continues throughout vegetative growth. The extent of fusion increases with leaf number but stabilizes by the twentieth leaf stage maximum extent of vein fusion also varies with genetic background (5-20 cm). Though fused vein and normal inbreds differed in the rate and pattern of leaf growth, examination of F2 and BC populations revealed no significant effect of the fused vein trait on leaf number, leaf size, and rate of leaf initiation. Anatomical examination revealed different vascular patterns in the transition zone between petiole and leaf blade for normal and fused vein leaves. In normal leaves, the vascular bundles of the petiole enlarge and coalesce to form a vascular crescent. The crescent reorganizes and diverges as large vascular columns and pairs of smaller flanking vascular bundles into each vein. In contrast, two cycles of enlargement, coalescence, and dispersal occur in fused vein leaves.


2009 ◽  
Vol 66 (2) ◽  
pp. 195-203 ◽  
Author(s):  
Nereu Augusto Streck ◽  
Isabel Lago ◽  
Leosane Cristina Bosco ◽  
Gizelli Moiano de Paula ◽  
Felipe Brendler Oliveira ◽  
...  

Panicle differentiation (DP) is a key developmental stage in rice (Oryza sativa L.) because at this stage plant switches from vegetative to reproductive development and source-sink relation changes to allocate part of the photoassimilates for growing spikelets and kernels. The objective of this study was to determine the main stem Haun Stage (HS) and the number of leaves that still have to emerge until flag leaf at PD in several cultivated rice genotypes and red rice biotypes in different sowing dates. A two-year field experiment was conducted in Santa Maria, Rio Grande do Sul State, Brazil, during the 2005-2006 and 2006-2007 growing seasons, and three sowing dates each year. Nine cultivated rice genotypes and two red rice biotypes were used. PD was identified as the R1 stage of the COUNCE scale, by sampling four plants from each genotype on a daily basis. When 50% of the sampled plants were at R1, the main stem HS was measured in 20 plants per genotype. The main stem final leaf number (FLN) was measured in these 20 plants when the collar of the flag leaf was visible. HS at PD is related to FLN in many cultivated rice genotypes and red rice biotypes, and that at PD, the number of leaves still to emerge until flag leaf is not constant for all the rice genotypes. These findings are not in agreement with reports in the literature.


Weed Science ◽  
1993 ◽  
Vol 41 (1) ◽  
pp. 75-81 ◽  
Author(s):  
James E. Smith ◽  
Peter W. Jordan

Shoot growth and morphology of sicklepod responded to distance of sicklepod from the soybean row and relative time of emergence of crop and weed. Sicklepod was added to soybean as either uniform stands of 26 individuals m−2or as widely spaced individuals. Sicklepod shoot height, number of main-stem nodes, number of primary branches, and shoot dry weight were decreased at 12 wk after emergence when plants were situated closer to a soybean row. Sicklepod that emerged 7 d later than soybean were shorter statured and had fewer main-stem nodes. Virtually all sicklepod overtopped the soybean, but proximity to the soybean row or later emergence reduced shoot dry weight up to 60%. A doubling in branches originating at lower main-stem nodes on sicklepod 25 cm from the row, compared to those in the row (upper branch numbers were unchanged), was associated with a 67% increase in leaves. Sixty to 90% of lower branches reached the upper canopy and thus contributed to the number of leaves above the soybean. Early-season effects of soybean interference on sicklepod reduced lower branches and, as a consequence, leaf production above the soybean late in the season, when sicklepod has the greatest impact on soybean yield.


1987 ◽  
Vol 109 (1) ◽  
pp. 95-106 ◽  
Author(s):  
D. N. Droushiotis ◽  
D. Wilman

SummaryAll combinations of four harvesting treatments and two sowing dates were comparedin each of 3 years in field experiments near Nicosia. In two of the years, different levels of applied nitrogen were compared. The harvesting treatments were: (1) a milk-stage cut,(2) a boot-stage cut and a regrowth cut, (3) a grazing-stage cut and a regrowth cut, and(4) three grazing-stage cuts and a regrowth cut. The sowing dates were (1) normal (12 November) and (2) early (15 October), with sufficient irrigation to ensure establishment. There was almost no response to applied nitrogen, evidently because of high reserves of available nitrogen in the soil. Early sowing reduced by 20 days the time taken to reach the stage at which the first node appeared, but increased, by 36 days, the length of time between the first node and the milk stage. Early sowing increased yield when the firstcut was at the grazing stage, but reduced yield when the first cut was at the boot or milk stage. At the grazing stage, the proportion of green leaf blade and the concentrations of nitrogen and nitrate-N were relatively high (means 74, 4·0 and 0·13% respectively) and digestibility was moderate (mean D-value 61). By the boot stage, green leaf, nitrogen and nitrate-N, but not digestibility, had declined (means 21, 1·8, 0·02 and 63 respectively). By the milk stage, green leaf, nitrogen and digestibility, but not nitrate-N, had declined further (means 3, 1·5, 48 and 0·05 respectively). Fully dead leaf blades were 28 units less digestible and 3·2 percentage units lower in nitrogen concentration than emerging leaves. Half dead leaf blades were higher in nitrate-N than fully expanded, fully green blades. 'Stem’ declined greatly in nitrogen concentration, but relatively little in digestibility, between the grazing and the boot stage.Crops cut once or three times at a grazing stage recovered well, although theretended to be some reduction in the number of tillers compared with an undefoliated crop.


2010 ◽  
Vol 16 (5) ◽  
Author(s):  
J. Csabai ◽  
Z. Nagy ◽  
A. Tilly Mándy

Telekia speiosa (Schreb.) Baumg. is a 100-150 cm high bushy perennial, which has yellow flowers and smells good. According to the descriptions (Farkas, 1999), it can be detected in two smaller areas within Hungary, namely in the Bükk hills and on the Szatmár-Bereg Plain. By the time of writing this paper, the population around Tiszabecs has already got extinct. Therefore, it is a protected relict species. It is named in honour of Sámuel Teleki, chancellor of Transylvania.Within the frame of the experiment, the Telekia speciosa (Schreb.) Baumg. was planted to places differently illuminated (sunny, semi shadow, shade), then the morphological changes brought about the various light conditions were investigated. The experiment was launched with a stock sown in October 2008. The seedlings were planted to three beds with diverse light conditions. The area of each bed was 1 m2, and ten seedlings were planted per m2. The parameters investigated are as follows: the length of leaf blade, the width of leaf blade, the length of petiole, the number of leaves per plant, and the alterations of leaves. As a result of our research, we can state that semi shadow is the optimal habitat for the plant. Under such ecological conditions the highest leaf production was observed, the leaves were species specific, healthy and big. The mean number of leaves per plant was 6.6, the mean length of blade was 16.6 cm, the mean width of blade was 13 cm, while the mean length of petiole was 14.2 cm. In the shade the plants grew poorly and the size of leaves were smaller. The mean number of leaves per plant was 4.1, the mean length of blade was 8.6 cm, the mean width of blade was 7.1 cm, and the mean length of petiole was 9.4 cm. In the sunny habitat a similarly high leaf production was observed as in the semi shadow; however, the leaves had brownish spots, they shriveled, feel rough, so they revealed a reduced aesthetical value. The mean number of leaves per plant was 6.6, the mean length of blade was 17.8 cm, the mean width of blade was 11.3 cm, and the mean length of petiole was 13.1 cm.


1984 ◽  
Vol 102 (3) ◽  
pp. 733-745 ◽  
Author(s):  
D. C. E. Wurr ◽  
Jane R. Fellows

SummaryThree American crisp lettuce varieties Ithaca, Pennlake and Saladin, formerly called Salinas, were sown on three occasions between April and July in 1980 and 1981 and on six occasions in 1982 between March and July. The rate of emergence of all three varieties increased with mean soil temperature at seed depth. The number of leaves was linearly related to air temperature measured on an accumulated day-degree scale > 0 °C from emergence. Pennlake had the highest rate of leaf production and Saladin the lowest rate. The relative growth rate of Ithaca increased with later sowing, while that of Pennlake declined. The time of maturity of one variety relative to another changed with sowing date but in all three varieties a quadratic curve relating the time of maturity to the time of sowing accounted for a high proportion of the variance in the time of maturity. When the times of sowing and maturity were both expressed on a day-degree scale > 0 °C a linear relationship accounted for more than 98% of the variance in time of maturity. These data provide the basis for planning a continuity programme. Within a variety there was considerable variation in mean head weight between sowings in the same year and different responses of head weight to sowing date from year to year. Using data from all 12 sowings, there was shown to be a significant association between head weight and the mean temperature up to 42 days from emergence but there was no association with radiation. Low mean temperatures (< 12 °C) were associated with lower head weights of Ithaca but higher head weights of Saladin. The opposite was true for mean temperatures greater than 16 °C. The reasons for this are discussed.


1969 ◽  
Vol 44 (4) ◽  
pp. 236-250
Author(s):  
Agripino Pérez López

An experiment was conducted to determine the association of certain characters with earliness in the tomato, at the Isabela Agricultural Experiment Substation. Four varieties were included in this study, namely: Earliana, first early; Valiant, second early; Queens, midseason; and Rutgers, late. The information recorded was as follows: 1, Leaf production at weekly intervals; 2, node number at which the first consecutive four-flower clusters appeared on the main stem; 3, percentage of the first four flowering lateral branches originating four leaves below or above the position of the first flower cluster on the main stem; 4, fresh and dry weights of five mature tomato leaves per plant collected from the first and the last plant in each replication; 5, fresh and dry weights of each whole tomato plant that was planted at the beginning and at the end of each replicate; 6, stem diameter two leaves below the first inflorescence; and 7, yield measured in terms of total number and weight of fruits produced. The results of this experiment strongly indicate that earliness is associated with the following characters: 1. High rate of leaf production, i.e., an early variety producing more leaves per unit of time than a late one. 2. Small number of leaves from the cotyledons to the position of the first inflorescence on the main stem. 3. A relatively large number of leaves from the first to the second, and from the second to the third inflorescences on the main stem. 4. Concentration of the first four flowering branches within a relatively small zone on the main stem, a few leaves below or above the position of the first inflorescence. 5. Relatively thin stem. 6. Relatively small leaves.


1987 ◽  
Vol 38 (2) ◽  
pp. 455 ◽  
Author(s):  
EJM Kirby ◽  
MW Perry

Rates of leaf appearance on the main stem were measured for various wheat varieties for five to ten sowing dates in three field experiments in Western Australia.Rate of leaf appearance was constant in relation to thermal time for any given variety and sowing date, and ranged from 0.0064 to 0.0132 leaves (�C day)-1. Most of this variation could be accounted for as a response to sowing date or rate of change of daylength, although the response was complicated by interactions with variety and year.Because successive measurements were made on the same plants, it was possible to estimate directly the effects of temperature on the rate of leaf emergence. In the three years, mean rates of leaf emergence were 0.008, 0.008 and 0.011 leaves day-1 �C-1 with base temperatures (temperatures at zero rate) of 0.08, -1.2 and 0.4�C respectively. Contrary to expectation, rate of leaf emergence decreased as temperatures increased in late sowings due probably to depression of leaf emergence as daytime temperatures exceeded 25�C.For Gamenya, the only variety common to the three years, the rate of leaf emergence (RLE) on the main stem was related to the rate of change of daylength (-DL, min day-1 negative when daylength shortening) by the equationRLE = 0.00949 + 0.000988 (-DL).For crops emerging in late June (-DL approximately zero) in southern Australia, this implies a constant thermal time for leaf appearance of 105�C day leaf-1.


Weed Science ◽  
1995 ◽  
Vol 43 (3) ◽  
pp. 410-416 ◽  
Author(s):  
Daniel. A. Ball ◽  
Betty Klepper ◽  
Donald. J. Rydrych

Above-ground seedling development was characterized for five annual grass weeds: downy brome, bulbous bluegrass, jointed goatgrass, Italian ryegrass, wild oat; and three cereals: winter wheat, winter barley, and winter triticale in field experiments over two years. The rate of leaf production on the main stem of each species was linearly related to cumulative growing degree days (GDD) since planting. Leaf production rates were faster for bulbous bluegrass, downy brome, Italian ryegrass, wild oat, and barley than for wheat, triticale, and jointed goatgrass. The main stem development stage when individual tillers appeared was similar in all species except under poor seedbed conditions in 1991, in which case lower-node tillers were delayed in the cereals and jointed goatgrass, but not in most of the weed species. Bulbous bluegrass, downy brome, and barley had the same percentage of plants produce the first four primary tillers on the main stem in both years; the other species showed more year-to-year variation. Seedling heights at full emergence were generally greater for large-seeded species. Small-seeded species compared to large-seeded species tended to have greater relative increases in plant height over time. Knowledge of comparative development rates between these weeds and cereals could provide information for development of growth models for each of the species and could also improve understanding of the competitive relationships between grass weeds and cereal grains.


Sign in / Sign up

Export Citation Format

Share Document