The growth of maize. I. The effect of plant density on yield of digestible dry matter and grain

1972 ◽  
Vol 78 (1) ◽  
pp. 65-71 ◽  
Author(s):  
B. O. Adelana ◽  
G. M. Milbourn

SUMMARYThree maize hybrids (Kelvedon 75A, Kelvedon 33, and Anjou 210) were grown under irrigated conditions at a wide range of density from 5·4 to 21·6 seeds/m2 at a rectangularity of 1:1. For yield of digestible dry matter at the time of silage harvest (7 October) a seed rate of 10·8 seeds/m2 (44000/acre) appeared adequate, as doubling the density to 21·6/m2 only resulted in 7% higher yield. K 33, which is a late·maturing hybrid bred for silage in south-east England (50·5–52·5 °N) produced the highest total yield of digestible dry matter due to a high yield of digestible stem. However, the dry matter % of this material would be too low for good ensilage and for a high level of feed intake. In the early grain hybrid K 75 A, 62% of the digestible dry matter was contained in the ear at the silage stage which improved the digestibility and dry matter % of the whole crop with only a 12% lower yield than K 33.The optimum density for grain was 10·8 seeds/m2. This is a higher response to density than is believed to occur in field crops in Britain as in these experiments the seed was planted on the square and irrigation was applied at moisture sensitive stages. The parabolic relationship between grain yield and density was closely related to grain number per unit area. At 10·8 seeds/m2 all three hybrids were of similar yield and grain number per unit area. In Anjou 210 this was achieved with one large ear per plant, whilst for the two Kelvedon hybrids mean ear production was 1·34/plant but with 27% fewer grains per ear.

1978 ◽  
Vol 26 (4) ◽  
pp. 383-398 ◽  
Author(s):  
A. Darwinkel

The effect of plant density on the growth and productivity of the various ear-bearing stems of winter wheat was studied in detail to obtain information on the pattern of grain production of crops grown under field conditions. Strong compensation effects were measured: a 160-fold increase in plant density (5-800 plants/m2) finally resulted in a 3-fold increase in grain yield (282 to 850 g DM/m2). Max. grain yield was achieved at 100 plants/m2, which corresponded to 430 ears/m2 and to about 19 000 grains/m2. At higher plant densities more ears and more grains were produced, but grain yield remained constant. Tillering/plant was largely favoured by low plant densities because these allowed tiller formation to continue for a longer period and a greater proportion of tillers produced ears. However, at higher plant densities more tillers/unit area were formed and, despite a higher mortality, more ears were produced. The productivity of individual ears, from main stems as well as from tillers, decreased with increasing plant density and with later emergence of shoots. In the range from 5 to 800 plants/m2 grain yield/ear decreased from 2.40 to 1.14 g DM. At 800 plants/m2 nearly all ears originated from main stems, but with decreasing plant density tillers contributed increasingly to the number of ears. At 5 plants/m2, there were 23 ears/plant and grain yield/ear ranged from 4.20 (main stem) to 1.86 g DM (late-formed stems). Grain number/ear was reduced at higher densities and on younger stems, because there were fewer fertile spikelets and fewer grains in these spikelets. At the low density of 5 plants/m2, plants developed solitarily and grain yield/ear was determined by the number of grains/ear as well as by grain wt. Above 400 ears/m2, in this experiment reached at 100 plants/m2 and more, grain yield/ear depended solely on grain number, because the wt. of grains of the various stems were similar. The harvest index showed a max. of about 44% at a moderate plant density; at this density nearly max. grain yield was achieved. At low plant densities the harvest index decreased from 45% in main stems to about 36% in late-formed stems. However, no differences in harvest index existed between the various ear-bearing stems if the number of ears exceeded 400/m2. (Abstract retrieved from CAB Abstracts by CABI’s permission)


2021 ◽  
pp. 45-50
Author(s):  
D. A. Fedorov ◽  
V. D. Bogdanova ◽  
Yu. G. Filtsyna ◽  
M. V. Vorobyev

Relevance. The most popular cucumber in Russia is pickling type (lenght 10-12 cm). There are not a lot of varieties this type cucumber for high wire and LIT crop in Russian seeds market.Methods. Were tested russian varieties F1 Ciborg, F1 Bavarets (Gavrish company) in compare F1 Bjorn (Enza Zaden, Netherlands) – the most popular in Russia now. Russian customer prefer pickling type because of traditional Russian cuisine. Prices of pickling type cucumber at autumn-winter time in 1-1.5 times more than middle size type cucumber. We had artificial light 240 Wt/sq.m, sodium lamps, our substrate was rockwool – Belagro (company from Belarusian republic). This rockwool have normal quality for short crop (3-4 month for growing cucumber), our plant density 2.76 plant/sq.m it was optimal for our light conditions (natural light in our region and artificial light).Results. Fourteen days after we put plants on slabs we had problems with plants of both russian varieties (F1 Ciborg and F1 Bavarets). We saw yellow parts in leaves, decrease length of stems, lost flowers. We made a decision about too high level of artificial light. We had only one opportunity for decrease it switch off 50% of lamps. We made it and we had 120 Wt/sq.m that. Therefore, we spent 50% less electricity for russian varieties. We think varieties F1 Ciborg and F1 Bavarets not very good for winter crop and we had good results because in our situation we have winter-spring crop, and every day the part of artificial light decrease and the part of natural light increase. F1 Ciborg had a problem with CGMMV and was deleted in 24th week of 2020. But we suppose it depend from a lot of conditions: quality of labor, protection plants. We think it is necessary more additional research. Total yield (for ten weeks of harvesting in winter-spring crop) F1 Bavarets – 32.4 kg/sq.m., F1 Ciborg – 31.9 kg/sq.m more then had F1 Bjorn – 28.9 kg/sq.m. The best marketable condition was F1 Ciborg, the second F1 Bjorn.


1971 ◽  
Vol 77 (3) ◽  
pp. 445-452 ◽  
Author(s):  
R. W. Willey ◽  
R. Holliday

SUMMARYTwo barley experiments are described in which a range of plant populations were shaded during different periods of development. Shading during the ear development period caused considerable reductions in grain yield, largely by reducing the number of grains per ear. Shading during the grain-filling period caused no reduction in grain yield. It is suggested that under conditions of these experiments there was probably a potential surplus of carbohydrate available for grain filling and that grain yield was largely determined by the storage capacity of the ears. The importance of the number of grains per ear as an indicator of individual ear capacity is emphasized.The effects of plant population on grain yield and its components are also examined. It is concluded that the number of grains per ear is the component having greatest influence on the decrease in grain yield at above-optimum populations and attention is again drawn to the possible importance of ear capacity. It is argued that on an area basis the number of grains per unit area may give a good indication of ear capacity. Examination of this parameter shows a close relationship with grain yield per unit area for both the shading and population treatments. It is particularly evident that a decrease in grain yield at high populations was associated with a comparable decrease in the number of grains per unit area. It is suggested that this decrease in grain number may be due to a lower production of total dry matter during ear development rather than an unfavourable partitioning of this dry matter between the ear and the rest of the plant. This lower production of total dry matter is attributed to the crop growth rates of the higher populations having reached their peak and then having declined before the end of the ear development period. This crop growth rate pattern, through its effect on grain number per unit area, is put forward as the basic reason why, in the final crop, grain yield per unit area decreases at above-optimum populations.


1988 ◽  
Vol 28 (3) ◽  
pp. 377 ◽  
Author(s):  
GJ Leach ◽  
DF Beech

Interception of radiation by chickpea (Cicer arietinum L.), in a year of below-average rainfall, and water use in both wet and dry years, were studied on a deep vertisol soil at Dalby, south-eastern Queensland. Measurements were made on 4 accessions (cv. Tyson, K223, CPI 56287 and CPI 56289) grown at a number of row spacings. Canopies intercepted less than 20% of incident radiation during the first 70 days after sowing (DAS) in the dry year (1980) before radiation interception reached a peak in mid-September (100 DAS) at about 70% interception in 250 mm rows. Above-ground dry matter was linearly related to intercepted radiation to the end of September (119 DAS), giving an efficiency of radiation conversion of 1.4 g DM per MJ of intercepted photosynthetically active radiation. Efficiency of conversion was marginally higher with 125 mm than with 62.5 mm intra-row spacing in rows 250 mm apart. In a wet year (1979), chickpea extracted water from below 1 m depth in the soil profile and used 356 mm water. In the dry year, only 16 1 mm water was used and none was extracted from below 1 m. K223 used water faster than cv. Tyson, and extraction was faster with close than with wide row spacing. Above-ground dry matter was produced at an efficiency of 3.4 (1980) to 4.2 (1979) g m-2 mm-I of water during the main period of growth through September, and a mean of 0.7 g m-2 seed for 2 seasons was produced per mm of water used over the whole season. The small differences in water extraction between accessions and spacing treatments were reflected during pod-filling as differences in plant water potential of 0.1-0.2 MPa during the early afternoon stress period. Chickpea appears to have poor stomata1 control over water loss, being comparable to summer legumes like soybean rather than to cowpea. We conclude that the benefit of close row spacing in enhancing radiation interception outweighs the small disadvantage from accelerated water depletion. The ability of chickpea to produce useful seed yields over a wide range of soil water availability makes it well suited for opportunistic winter cropping.


2019 ◽  
Vol 65 (No. 8) ◽  
pp. 377-386 ◽  
Author(s):  
Bogdan Kulig ◽  
Edward Gacek ◽  
Roman Wojciechowski ◽  
Andrzej Oleksy ◽  
Marek Kołodziejczyk ◽  
...  

The study aimed at comparing the yield of dry biomass and energy efficiency of 22 willow cultivars depending on the harvesting frequency and variable plant density. The field experiment was established in 2010. The willow cultivars were planted in two densities; 13 300 and 32 500 plants per ha. Among the compared cultivars in the second year (2013) of full production, high yield of dry matter was obtained from cvs. Tordis (33.1 t/ha/year), Inger (30.4 t/ha/year) and Klara (29.0 t/ha/year). After six years of cultivation, the highest aboveground dry matter was given by cvs. Tora (27.4 t/ha/year) and Tordis (27.0 t/ha/year). The gross calorific value of willow biomass ranged from 15.2–20.1 GJ/t dry weight. Greater energy efficiency (329.3 GJ/ha/year) occurred in willow cultivars collected in a two-year cycle than in the one-year cycle (286.4 GJ/ha/year). In the two-year cycle collected in the third year after planting, energy efficiency was greater (379.5 GJ/ha/year) than in the two-year cycle harvested in the sixth year after planting (279.15 GJ/ha/year). The initial slower growth of biomass does not determine plant yielding.


1976 ◽  
Vol 87 (1) ◽  
pp. 89-99 ◽  
Author(s):  
E. O. Lucas ◽  
G. M. Milbourn

SummaryThe growth and development of two varieties of Phaseolus vulgaris (Purley King and Limelight) were compared in two experiments in 1973 and 1974 at a range of planting density from 20 to 100 seeds/m2. Within this range, the relationship between seed yield and density in Purley King was asymptotic, although there was a suggestion that if even higher densities had been tested, a downward trend in yield might have occurred. The optimum density of planting for Purley King in Expt 1 was 50 seeds/m2 while that for Limelight was 40 seeds/m2. The corresponding densities in Expt 2 were 75 and 50 seeds/m2 respectively. Although number of branches per plant generally decreased with increasing density, there was no significant density effect on the number of nodes per plant. Thus stabilization of seed yield occurred even at quite low densities. Although in the low-density treatments, less vegetative tissue was produced, the peak of dry-matter yield occurred later after flowering and the slower subsequent senescence ensured the presence of active photosynthetic tissue throughout the pod-fill stage. Less pod retention occurred at high density which, combined with the ability of widely spaced plants to produce pods over a longer period, resulted in a similar number of pods per unit area over a wide range of density.Although the variety Purley King produced more than double the number of mature pods from its extra nodes and branches, it was outyielded by Limelight by 35% from the combined effect of more seeds per pod and a higher mean seed weight. Limelight also produced this high yield with less vegetative tissue. In both varieties it appeared that pod photosynthesis could take place, in Purley King because the pods were borne on higher nodes above the canopy and in Limelight due to the earlier senescence of its smaller leaf area. However, in spite of the apparent physiological advantages of Limelight, the pods are not borne high enough on this plant to enable satisfactory mechanical harvesting.


1978 ◽  
Vol 90 (3) ◽  
pp. 447-457 ◽  
Author(s):  
D. Reid

SummaryIn a 3-year experiment on a sward of S. 23 perennial ryegrass 21 rates of nitrogen fertilizer ranging from 0 to 897 kg/ha were applied annually on plots cut three, five or ten times per year. The cutting dates within each frequency were decided on the basis of herbage growth stage. Four-parameter exponential curves fitted to the herbage yield data show that the pattern of response to nitrogen application in the five cuts per year treatment was markedly similar to that reported for a previous experiment (Reid, 1970). Alterations in the cutting frequency affected the pattern of dry-matter yield response to nitrogen, but not that of crude-protein yield response. The combined effects of cutting frequency and nitrogen rate are illustrated by response surfaces fitted to the dry-matter yield results using an extension of the equation for the curves fitted to the individual frequency results. These surfaces show that as the number of cuts per year was increased the total yield and the response to nitrogen decreased, but the response was maintained to an increasingly high nitrogen rate. The practical implications of the results are discussed in relation to intensive grazing managements for dairy cows.


1986 ◽  
Vol 107 (3) ◽  
pp. 573-578 ◽  
Author(s):  
E. O. Lucas

SummarFARZ 27, a high-yield maize variety, was grown in 1984 and 1985 over a wide range of density treatments (1·9– 11·1 plants/m2) and with four rates of nitrogen application (0, 75, 100 and 150 kg N/ha) in Ibadan. south-western Nigeria.There was no significant density or fertilizer effect on morphological characters of number of leaves per plant, height or stem diameter. For total dry-matter yield, the highest density of planting gave the highest yield although less dry matter was obtained in the 1985 experiment than in the 1984 experiment. Optimum density for grain production in both years was 8·8 plants/m2. There is an indication that there is no need to increase density of planting of maize beyond 80000 plants/ha in the south-western part of Nigeria. Plants without applied nitrogen fertilizer gave significantly lower total dry-matter and grain yields than plants with applied nitrogen. Highest grain yield was obtained with 150 kg N/ha in both years. By doubling the nitrogen application rate from the present recommended level of 75 kg N/ha to 150 kg N/ha an average increase of 0·42t/ha of maize was obtained in both years. With the present prices of fertilizer and maize, this increase is economical. It seems therefore that more revenue would accrue to the farmers by using 150 kg N/ha on the ‘FARZ series’ of maize instead of the present recommendation of 75 kg N/ha.


1967 ◽  
Vol 7 (27) ◽  
pp. 342 ◽  
Author(s):  
LA Edye

Thirty-eight introductions of Glycine javanica were established in swards with an associate grass at Lawes and Kumbia in south-eastern Queensland and at 'Lansdown' near Woodstock in northern Queensland. The introductions showed highly significant differences in annual yield and total yield of dry matter. At Lawes there were also significant differences in ease and vigour of establishment, in nitrogen content, and in seasonal yield distribution. Late maturing introductions grew better late in the season when early and mid-season maturity types were either flowering or had flowered. At 'Lansdown' all the introductions tolerated a dry season of 27 weeks in 1965, but failed to survive a dry season of 36 weeks in 1966. At Lawes, the most promising introductions in terms of high yield and strong stolon development in each maturity type were, Tinaroo (late), C.P.I. 26433 (mid-season), Cooper (early), and C.P.I. 27835 (early). At 'Lansdown' C.P.I. 25423 (early) and C.P.I. 25918 (very early) appeared most tolerant of extended dry periods. At Lawes, swards of Cooper (C.P.I. 25702) and green panic grass (Panicum maximum var trichoglume) yielded 7,000 to 8,000 lb of dry matter an acre with a legume content of 50 to 56 per cent in their third, fourth, and fifth seasons. In these swards the dry matter production and legume content showed no signs of declining after the third season.


1970 ◽  
Vol 18 (1) ◽  
pp. 89-104
Author(s):  
E.W.M. Verheij

Two-year trials are discussed on the effects of different spacings, planting pattern and row orientation, stopping the plants, and time of harvest on the cropping, habit and root growth of the hybrid brussels sprouts variety Thor. Yields of dry matter per sq.m. rose sharply with increasing plant density up to about 4 plants per sq.m., above which there was little further increase. The average weight per plant, however, showed the reverse trend, and declined with closer spacing. The total yields of sprouts from unstopped plants attained a maximum at a density of about 1 plant per sq.m., but the maximum yields and numbers of marketable sprouts were obtained with densities of about 2 and 2 plants per sq.m., respectively. Plants grown at high densities were taller and more slender than low-density plants, a habit well suited to mechanical stripping. Moreover, the sprouts from high-density plants were more uniform, which facilitated grading. There was little difference between the number and distribution of the roots, including depth of rooting, over a wide range of plant densities. However, high-density plants had fewer thick roots, and at the widest spacings the total number of roots per sq.m. declined. The pattern of planting had a slight influence on the height of the low-density plants, but differential effects of various row orientations were negligible. Stopping the plants greatly increased the total yields of sprouts at all densities; the numbers of marketable sprouts from the stopped plants were also greater, especially at densities of 3 plants per sq.m. and above. Harvesting stopped plants in late October instead of late September resulted in much higher yields of sprouts at all densities except the lowest, despite a decline in the fresh weights of the plants during this period.-I.T.T., Wageningen. (Abstract retrieved from CAB Abstracts by CABI’s permission)


Sign in / Sign up

Export Citation Format

Share Document