Combined conservation of jack bean and velvet bean with sorghum: evaluation of lab-scale silages and in vitro assessment of their nutritive value

2014 ◽  
Vol 152 (6) ◽  
pp. 967-980 ◽  
Author(s):  
R. LIMA-OROZCO ◽  
I. VAN DAELE ◽  
U. ÁLVAREZ-HERNÁNDEZ ◽  
V. FIEVEZ

SUMMARYThe potential of ensiled sorghum–soybean as a ruminant feed has already been demonstrated; however, alternatives for soybean should be considered because other legumes such as jack bean (JB; Canavalia ensiformis (L.) DC.) and velvet bean (VB; Mucuna pruriens (L.) DC) might produce better yields under tropical conditions. First, the possibility for a qualitative conservation of these legumes in combination with sorghum was studied using lab-scale silages. Furthermore, the potential of additional molasses as a source of water-soluble carbohydrates (WSC) and a microbial inoculant (BIOPRANAL) to improve silage quality were assessed. As sorghum or legume tannins may influence the silage nutritive value, their importance was assessed through the addition of polyethylene glycol (PEG), which reduces tannin activity. Therefore, 25 treatments per legume–sorghum combination were created according to a central composite design. An acceptable silage quality was reached when at least half of the fresh biomass consisted of sorghum in combination with at least 15 g of additional WSC/kg fresh material. The nutritive value of mixed silages as well as pure sorghum silage in combination with dry jack beans was determined through in vitro digestibility in the rumen and small intestine. Polyethylene glycol increased the in vitro production of short-chain fatty acids, ammonia (NH3) concentrations and effective rumen dry matter and crude protein degradability for both mixed silages, indicating that tannins reduced rumen degradability. The latter action could be positive as the amount of digestible bypass protein increased when no PEG was added in the silo. Propionate and valerate proportions were increased through PEG addition to sorghum–JB and sorghum–VB silages, respectively, suggesting that the nature of the tannins differ between these legumes.

2002 ◽  
Vol 29 (1) ◽  
pp. 91 ◽  
Author(s):  
Andrew P. Woolnough ◽  
William J. Foley

Near-infrared spectroscopy (NIRS) was used to predict the nutritive value of forage species available to the critically endangered northern hairy-nosed wombat (Lasiorhinus krefftii). Nutritive attributes of the forage successfully estimated included total nitrogen concentration, fibre (including neutral detergent fibre, acid detergent fibre and acid lignin), organic matter, water soluble carbohydrates and in vitro dry matter digestibility. The reported results demonstrate the seasonal variability of the forage resource available to L. krefftii in its tropical savanna habitat. Multivariate modelling of the spectra enabled the nutritive value of forage samples to be estimated with coefficients of determination (r2) of 0.770–0.995 and standard errors of the cross-validation of 0.070–2.850 using a modified partial least-squares analysis technique. The standard error of the laboratory was 0.02–1.42. This study demonstrates that broad-based NIRS predictive equations can be used to predict the nutritive value of a number of plant types available to a herbivore over time. By using NIRS the analyst can rapidly analyse large numbers of samples with limited reduction of precision, thereby enabling large-scale ecological applications that may have previously been impeded by time and costs.


2021 ◽  
Vol 64 (2) ◽  
pp. 401-411
Author(s):  
Noura Saïed ◽  
Mohamed Khelifi ◽  
Annick Bertrand ◽  
Gaëtan F. Tremblay ◽  
Mohammed Aider

HighlightsJuice extraction resulted in a decrease in the nutritive value of the bagasse as compared with the initial biomass.Silages made from the second pressing bagasse were well conserved.Sweet sorghum silage has a better nutritive value than sweet pearl millet.Abstract. Pressing the biomass of sweet sorghum and sweet pearl millet in-field is one of the suggested options for bioethanol production. The extracted juice can be delivered to an ethanol plant, and the bagasse (pressing residue) can be used for ruminant feeding. Efficient carbohydrate extraction is highly important for good ethanol yield. However, enough carbohydrates must remain in the bagasse for its adequate conservation as silage. In this study, the ensilability and the chemical composition of the second pressing bagasse of sweet sorghum and sweet pearl millet were investigated. The bagasse was obtained following a second pressing of the first pressing bagasse after its impregnation with water based on three water:bagasse ratios (0.5, 1, and 1.5). Results indicated that water:bagasse ratio did not affect water-soluble carbohydrate (WSC) extraction for both crops. The second pressing bagasse of sweet sorghum and sweet pearl millet contained 80.5 ±4.6 and 60 ±4.6 g of WSC kg-1 dry matter (DM), respectively. The second pressing bagasse of both crops had reduced nutritive value compared to the initial biomass, i.e., higher neutral detergent fiber (NDF) and acid detergent fiber (ADF) concentrations along with lower non-structural carbohydrate (NSC) concentration, in vitro true digestibility of DM (IVTD), and in vitro NDF digestibility (NDFd). The second pressing bagasses of both crops also showed good ensilability, but sweet sorghum bagasse silages were of better nutritive value than sweet pearl millet bagasse silages (ADF = 446.2 ±3.7 vs. 463.2 ±3.7 g kg-1 DM, IVTD = 813.8 ±3.4 vs. 708.8 ±6.8 g kg-1 DM, and NDFd = 741.8 ±4.8 vs. 596.2 ±8.5 g kg-1 NDF, respectively). The water:bagasse ratio used for bagasse impregnation before the second pressing only affected the NDF concentration of silages, as a higher NDF concentration was obtained with a water:bagasse ratio of 1.5. Sweet sorghum and sweet pearl millet can be considered dual-purpose crops; the extracted juice can be fermented into ethanol, and the second pressing bagasse can be used to make good-quality silage. Keywords: Bagasse impregnation, Nutritive value, Silage, Sweet pearl millet, Sweet sorghum, Water-soluble carbohydrates.


Author(s):  
S A Edwards ◽  
J Weddell ◽  
C Fordyce ◽  
A Cadenhead ◽  
J Rooke

Grass silage provides an alternative feed for extensively kept sows, but previous experiments have indicated very variable intake and utilisation, dependant on silage quality. ‘Maxgrass’ silage additive (BP Nutrition) is a blend of compounds including ammonium hexamethanoate, ammonium hexapropanoate and octanoic acid. It is designed to modify fermentation, so that the resulting silage retains a higher proportion of water soluble carbohydrates. This should improve the nutritive value for pigs.The experiment comprised two parts: an intake/growth study and a separate digestibility study. The same two experimental silages, either treated with Maxgrass or an untreated control, were offered to groups of pregnant sows in a randomised block experimental design in each experiment. Second cut, mainly perennial ryegrass herbage was cut by mower conditioner and direct ensiled. Alternate loads were left untreated or treated with Maxgrass at a mean rate of 6.04 litres/tonne.


1979 ◽  
Vol 42 (1) ◽  
pp. 139-147 ◽  
Author(s):  
G. Moseley ◽  
J. R. Jones

1. Three sheep fitted with duodenal re-entrant cannulas and three with large rumen fistulas were given red clover, perennial ryegrass and a 2:1 (w/w) mixture of grass and clover in two Latin square arrangements. Measurements were made of voluntary intake, digestibility, flow of nutrients into the duodenum and the flow of Cr-EDTA marker through the reticulo-rumen.2. Organic matter (OM) digestibility was similar for the three feeds but the voluntary intake decreased in the order mixture > red clover > perennial ryegrass. There was an increase in the rate of marker flow from the rumen and a decrease in retention time of the same order. Rumen volume did not change significantly.3. There was a reduction in the mean particle size of rumen contents in the order perennial ryegrass > clover > mixture. The in vitro digestibility of particles decreased with size; the reduction being more rapid for clover than perennial ryegrass.4. The proportion of ingested digestible OM appearing at the duodenum increased from 18.4% to 26.7% to 30.0% for perennial ryegrass, clover and the mixture respectively.5. A higher proportion of digestible cellulose and hemicellulose disappeared over the stomach for the perennial ryegrass feed compared to the clover and the mixture but over 96% of water soluble carbohydrates and starch disappeared over the stomach for all three feeds.6. The apparent digestibility of nitrogen was similar for all three feeds but the proportion of undigested feed N appearing at the duodenum was calculated to be greater by a factor of 1.71 and 2.52 for clover and mixture feeds compared to grass.7. It was concluded that the higher nutritive value of red clover compared to perennial ryegrass was due to an increased rate of flow of nutrients througth the reticulo-rumen and an increase in the proportion of digestible OM digested post ruminally.


2020 ◽  
Vol 18 (2) ◽  
pp. e0602
Author(s):  
Somayeh Farzinmehr ◽  
Javad Rezaei ◽  
Hassan Fazaeli

Aim of study: To evaluate the effect of maturity stage and harvesting frequency of Jerusalem artichoke (JA) forage on the nutritional quality of the tubers and forages.Area of study: The plant cultivation and laboratory experiments were carried out in Karaj (Alborz, Iran) and Tehran (Tehran, Iran), respectively.Material and methods: Forages were harvested every 60, 90 and 120 days during the growing season (four, three and two harvests per year, respectively). Tubers were harvested just once, at the end of the growing season, from plots with four, three and two forage cuts per year. Biomass production, chemical composition and in vitro ruminal fermentation of the forages and tubers were assessed.Main results: Compared to 90 and 120 days, the forages harvested every 60 days contained the highest (p<0.05) yearly dry matter (DM) biomass (27.16 t/ha), crude protein (98.6 to 145 g/kg DM), organic matter digestibility (0.607 to 0.691) and microbial biomass production (350 to 369 g/kg DM). Compared to 60 and 90 days, harvesting JA forage every 120 days caused the tubers with the higher (p<0.05) water-soluble carbohydrates (WSC), in vitro digestibility and DM yield (7.63 t/ha). Jerusalem artichoke forages and tubers contained the low phenolics (4.93 to 13.2 g/kg DM) and nitrate (1.12 to 3.19 g/kg DM). Overall, the best harvesting interval of JA forage to achieve tubers with the highest yearly yield, WSC and digestibility was every 120 days, while the highest nutritive value and yield of the forages were observed with harvesting JA every 60 days.Research highlights: The best harvesting interval of JA forage to obtain the highest yearly DM, protein and energy biomass from both tubers and forage was every 60 days.


2015 ◽  
Vol 13 (2) ◽  
pp. e06SC01
Author(s):  
Ali Hatami ◽  
Daryoush Alipour ◽  
Fardin Hozhabri ◽  
Meisam Tabatabaei

<p>This study was conducted to evaluate the effects of ensiling pomegranate peel (PP) with different levels of polyethylene glycol (PEG) on its chemical composition, tannin content, <em>in vitro</em> gas production and fermentation characteristics. Fresh PP was chopped and ensiled in mini silos made of polyvinyl chloride tubing. Five levels of PEG were studied: 0 (control), 5, 10, 15, and 20% of fresh PP (dry matter basis). Total phenolics, total tannins, crude ash, crude protein, neutral detergent fiber and acid detergent fiber content and pH decreased with increasing PEG levels, whereas dry matter and non-fiber carbohydrates content, non-tannin phenols, lactic acid and ammonia concentrations and buffering capacity increased. The water soluble carbohydrates and ether extract concentrations were not influenced by the addition of PEG. The partitioning factor and efficiency of microbial biomass production were quadratically decreased (<em>p</em>=0.020 and <em>p</em>=0.032, respectively) as PEG inclusion increased, but the <em>in vitro </em>apparent dry matter disappearance did not differ among treatments. Compared to control, the <em>in vitro</em> true disappearance and <em>in vitro</em> fiber digestibility had a tendency to be higher in silages treated with PEG (<em>p</em>=0.081 and <em>p</em>=0.069, respectively). The metabolizable energy content and total volatile fatty acids concentration increased quadratically by PEG inclusion. The asymptotic gas production and rate of gas production were higher in PEG-treated silages. Overall, ensiling PP with PEG can improve the fermentation characteristics of this by-product.</p>


2004 ◽  
Vol 44 (8) ◽  
pp. 763 ◽  
Author(s):  
K. F. Smith ◽  
R. J. Simpson ◽  
R. N. Oram

The effects of site and season on the nutritive value of 16 perennial ryegrass cultivars and 60 half-sib families were assessed at 2 locations in South West Victoria. Crude protein, water-soluble carbohydrates, neutral detergent fibre and in vitro digestibility were measured on vegetative herbage, harvested in either autumn or spring. While no heritable genetic variation for nutritive value parameters was detected in this set of families, consistent differences in the nutritive value of cultivars were measured across sites and seasons. The cultivars Yatsyn1 and Ellett were consistently high in both water-soluble carbohydrates and in vitro digestibility. The differences in mean nutritive value between high and low ranking cultivars were ~40 g/kg water-soluble carbohydrates and 3–5% in vitro digestibility. These consistent differences in forage quality demonstrate the value of measuring forage quality during cultivar evaluation. The identification of cultivars with improved nutritive value will also facilitate the crossing of the alleles that confer this improvement into other genetic backgrounds.


1999 ◽  
Vol 50 (4) ◽  
pp. 453 ◽  
Author(s):  
B. J. Leury ◽  
C. Siever-Kelly ◽  
R. J. Simpson ◽  
K. L. Gatford ◽  
T. A. Ciavarella ◽  
...  

Annual grass pasture (mainly annual ryegrass) was treated at seed head emergence (12 October 1990) with the herbicide glyphosate to delay loss of digestibility during late spring and summer. The lowest rate of glyphosate application needed to retain a high digestibility in the dry matter (DM) of the senescent grass sward was 180 g a.i./ha. The in vitro DM digestibility of control (unsprayed) pasture declined rapidly from relatively high levels near anthesis (28 October) (77–86%, leaves and seed head; 66%, stems) until about 38 days after anthesis (51–71%, leaves and seed head; 24%, stem). Thereafter, the digestibility of the plant parts did not change appreciably over at least 4 months. Treatment with glyphosate significantly slowed the loss in digestibility of stem, leaf sheaths, and seed head but did not affect the decline in digestibility of leaf blades. For example, the digestibility of stem in the sprayed pasture was 26 percentage units higher than that in the control pasture 38 days after anthesis. If the time at which digestibility of stems reached 50% is taken as an indication, the effective delay in loss of digestibility was of the order of 5 weeks. However, improved digestibility in the treated pasture was achieved at the expense of pasture yield, with the peak yield of control pasture being 4 t DM/ha (45%) higher than that of the treated pasture. Improved digestibility in treated grass pasture was mainly associated with delayed loss of water-soluble carbohydrates (WSC), except in the seed head. Improved cell wall (neutral detergent fibre) digestibility also contributed to varying degrees and was the main factor contributing to improved digestibility in the seed head. The major WSC present in the treated pasture was fructan. The crude protein concentrations of all plant parts of the senescent pasture, except the leaf blades, were also increased by treatment with glyphosate.


1979 ◽  
Vol 92 (2) ◽  
pp. 471-483 ◽  
Author(s):  
R. H. Phipps ◽  
R. F. Weller

SummaryResults from two trials, in which the effects of genotype, plant density and harvest date on the accumulation of dry matter and the chemical composition and nutritive value of plant components, are presented. Inra 200, LG11, Maris Saffron, Caldera 535, Anjou 210 and White Horse Tooth were established at 5·0, 9·8 and 13·5 plants/m2 in factorially designed experiments.In vitro digestible organic matter in the dry matter, water-soluble carbohydrates, starch, total nitrogen, acid-detergent fibre, cellulose, lignin, phosphorus, magnesium, potassium, calcium, sodium, zinc, manganese and copper were analysed for the whole crop and plant components.With the exception of White Horse Tooth, stem yields declined after reaching a peak 2–3 weeks after mid-silk. This was attributed to movement of water-soluble carbohydrates from the stem to the ear, with greater movement being associated with a larger ear component. As a result the in vitro digestible organic matter in the dry matter value of the stem component was greater for crops containing a small proportion of ear. The higher stem digestibility value compensated for the small ear component, with the result that the varying proportions of plant components did not markedly affect whole-crop digestibility prior to ensiling.The greater deposition of starch in crops with a large ear component caused a significantly more rapid rise in whole-crop D.M. content than in crops with a small ear component.Acid-detergent fibre and lignin values for the whole crop were much lower than those recorded in the U.S.A. Genotype and plant density had no effect on mineral content but phosphorus and potassium concentrations declined dramatically after frost.


1994 ◽  
Vol 45 (4) ◽  
pp. 901 ◽  
Author(s):  
I Radojevic ◽  
RJ Simpson ◽  
JA StJohn ◽  
MO Humphreys

Differences in the water-soluble carbohydrate concentrations of herbage of northern European perennial ryegrass cultivars (Aurora, Melle, Cariad) grown under southern Australian conditions, and a New Zealand perennial ryegrass cultivar (Ellett) which yields well in southern Australia, were investigated in relation to their nutritive value. The water-soluble carbohydrates (WSC), total nitrogen, in vitro dry matter digestibility (IVDMD), neutral detergent fibre (NDF), and digestibility of NDF (NDFD) were measured in all cultivars. Aurora and Cariad exhibited higher WSC concentrations than the other cultivars, particularly during summer. This buffered the decline in IVDMD that was due to declining NDFD at that time of the year and resulted in an improvement in IVDMD of between 2 and 6%. Although WSC and nitrogen concentrations of the herbage were negatively correlated, this was due mainly to divergent seasonal variation in these components of the herbage.


Sign in / Sign up

Export Citation Format

Share Document