Coagulation of homogenized milk particles by rennet

1984 ◽  
Vol 51 (3) ◽  
pp. 417-424 ◽  
Author(s):  
Elizabeth W. Robson ◽  
Douglas G. Dalgleish

SummaryThe action of rennet on homogenized milk was studied using turbidimetric and light scattering techniques, and compared with results obtained previously for skim milk. The time required for the onset of coagulation was shorter for homogenized milk than for skim milk. The rate of coagulation of fully renneted particles increased with increasing temperature, and with increasing Ca2+ concentration, but was only slightly influenced by changes in ionic strength. The von Smoluchowski rate constant for the coagulation reaction was two orders of magnitude smaller for homogenized milk than for skim milk. Results suggest that coagulation of homogenized milk is controlled in general by the same factors as skim milk, and that the reaction may be inhibited owing to a reduction in the amount of casein available for mutual interaction, rather than to disruption of the micelles on homogenization.

1989 ◽  
Vol 109 (4) ◽  
pp. 1529-1535 ◽  
Author(s):  
J H Sinard ◽  
T D Pollard

At low ionic strength, Acanthamoeba myosin-II polymerizes into bipolar minifilaments, consisting of eight molecules, that scatter about three times as much light as monomers. With this light scattering assay, we show that the critical concentration for assembly in 50-mM KCl is less than 5 nM. Phosphorylation of the myosin heavy chain over the range of 0.7 to 3.7 P per molecule has no effect on its KCl dependent assembly properties: the structure of the filaments, the extent of assembly, and the critical concentration for assembly are the same. Sucrose at a concentration above a few percent inhibits polymerization. Millimolar concentrations of MgCl2 induce the lateral aggregation of fully formed minifilaments into thick filaments. Compared with dephosphorylated minifilaments, minifilaments of phosphorylated myosin have a lower tendency to aggregate laterally and require higher concentrations of MgCl2 for maximal light scattering. Acidic pH also induces lateral aggregation, whereas basic pH leads to depolymerization of the myosin-II minifilaments. Under polymerizing conditions, millimolar concentrations of ATP only slightly decrease the light scattering of either phosphorylated or dephosphorylated myosin-II. Barring further modulation of assembly by unknown proteins, both phosphorylated and dephosphorylated myosin-II are expected to be in the form of minifilaments under the ionic conditions existing within Acanthamoeba.


1987 ◽  
Vol 54 (3) ◽  
pp. 389-395 ◽  
Author(s):  
David S. Horne

SummaryThe ethanol (EtOH) stability of skim milk and the stability towards aggregation of casein micelles diluted into ethanolic buffer solutions were compared using data obtained from previously published experiments. Differences in absolute stability and in relative response were observed when Ca2+ level and pH were adjusted, the buffer system results lying below those from skim milk in both cases. Increasing the ionic strength of skim milk adjusted to pH 7·0 lowered its EtOH stability whereas increasing the ionic strength of the diluting buffer increased the stability of the casein micelles. The hypothesis is put forward that the differences are due to the simultaneous precipitation of Ca phosphate when EtOH is added to skim milk. This draws calcium from the caseinate sites of the micelle, counteracting the destabilizing effects of the EtOH towards the micelle. Such removal and the consequent restructuring are kinetically controlled and micellar precipitation in skim milk finally occurs when the micellar coagulation time falls within the time scale of the restructuring reactions.


1988 ◽  
Vol 55 (2) ◽  
pp. 179-188 ◽  
Author(s):  
Mark S. Jablonka ◽  
Peter A. Munro ◽  
Geoffrey G. Duffy

SummaryTwo light scattering methods for monitoring the precipitation of casein from skim milk (9% w/w) with mineral acid are presented. Experiments were carried out at precipitation temperatures in the range 25–53 °C and precipitation pH values in the range 3·9–5·1. The initial stages of precipitation were explored using a light fibre optics system attached to a closed-loop acid/milk mixing system. The later stages of particle formation and growth were examined using a laser doppler anemometer attached to an open-pipe flow system. It was found that there was a lag initially, followed by a period of rapid particle growth. During a third phase a dynamic equilibrium between particle growth, break-up and shrinkage was established. A model for isoelectric casein precipitation based on these observations is proposed and discussed.


2020 ◽  
Vol 7 (1) ◽  
pp. 157-163 ◽  
Author(s):  
Chunyu Zhao ◽  
Mei Zhu ◽  
Ye Fang ◽  
Xiaoman Liu ◽  
Lei Wang ◽  
...  

A bio-inspired proteinosome-based material showed programmed mutual interaction with E. coli by controlling the temperature and ionic strength.


1989 ◽  
Vol 109 (4) ◽  
pp. 1537-1547 ◽  
Author(s):  
J H Sinard ◽  
W F Stafford ◽  
T D Pollard

We used 90 degrees light scattering, analytical ultracentrifugation, and electron microscopy to deduce that Acanthamoeba myosin-II minifilaments, composed of eight molecules each, assemble by a novel mechanism consisting of three successive dimerization steps rather than by the addition of monomers or parallel dimers to a nucleus. Above 200 mM KCl, Acanthamoeba myosin-II is monomeric. At low ionic strength (less than 100 mM KCl), myosin-II polymerizes into bipolar minifilaments. Between 100 and 200 mM KCl, plots of light scattering vs. myosin concentration all extrapolate to the origin but have slopes which decrease with increasing KCl. This indicates that structures intermediate in size between monomers and full length minifilaments are formed, and that the critical concentrations for assembly of these structures is very low. Analytical ultracentrifugation has confirmed that intermediate structures exist at these salt concentrations, and that they are in rapid equilibrium with each other. We believe these structures represent assembly intermediates and have used equilibrium analytical ultracentrifugation and electron microscopy to identify them. Polymerization begins with the formation of antiparallel dimers, with the two tails overlapping by approximately 15 nm. Two antiparallel dimers then associated with a 15-nm stagger to form an antiparallel tetramer. Finally, two tetramers associate with a 30-nm stagger to form the completed minifilament. At very low ionic strengths, the last step in the assembly mechanism is largely reversed and antiparallel tetramers are the predominant species. Alkaline pH, which can also induce minifilament disassembly, produces the same assembly intermediates as are found for salt induced disassembly.


1962 ◽  
Vol 40 (3) ◽  
pp. 363-372 ◽  
Author(s):  
R. W. Burley ◽  
W. H. Cook

The effect of pH, temperature, ionic strength, and lipoprotein concentration on the reversible dissociation of α- and β-lipovitellin in aqueous solutions above pH 6 has been examined by ultracentrifugal measurements. Under otherwise similar conditions α- and β-lipovitellin are 50% dissociated at pH 10.5 and 7.8, respectively. Both lipovitellins undergo an irreversible aggregation above about pH 11; β-lipovitellin is sometimes converted to a non-dissociable form upon aging. Dissociation of both lipovitellins decreases with increasing ionic strength and increasing temperature. Although the ultracentrifugal method has limitations, provisional equilibrium constants and thermodynamic data were obtained from it that are comparable with those obtained for certain protein systems.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 520
Author(s):  
Egor V. Musin ◽  
Aleksandr L. Kim ◽  
Sergey A. Tikhonenko

The degradation of polyelectrolyte microcapsules formed on protein-free CaCO3 particles consisting of polyallylamine (PAH) and polystyrene sulfonate (PSS) and the resulting yield of protein in the presence of various salts of different concentrations, as well as at two pH values, was studied by fluorescence spectroscopy; the protein was incorporated into prepared microcapsules by adsorption. It was found that a high concentration of sodium chloride (2 M) leads to considerable dissociation of PAH, which is apparently due to the loosening of polyelectrolytes under the action of ionic strength. At the same time, 0.2 M sodium chloride and ammonium sulfate of the same ionic strength (0.1 M) exert less influence on the amount of dissociated polymer. In the case of ammonium sulfate (0.1 M), the effect is due to the competitive binding of sulfate anions to the amino groups of the polyelectrolyte. However, unlike microcapsules formed on CaCO3 particles containing protein, the dissociation of polyelectrolyte from microcapsules formed on protein-free particles increased with increasing temperature. Apparently, a similar effect is associated with the absence of a distinct shell, which was observed on microcapsules formed on protein-containing CaCO3 particles. The high level of the presence of Fluorescein isothiocyanate (FITC)-labeled Bovine Serum Albumin (BSA) in the supernatant is explained by the large amount of electrostatically bound protein and the absence of a shell that prevents the release of the protein from the microcapsules. In 2 M NaCl, during the observation period, the amount of the released protein did not exceed 70% of the total protein content in the capsules, in control samples, this value does not exceed 8%, which indicates the predominantly electrostatic nature of protein retention in capsules formed on protein-free CaCO3 particles. The increase in protein yield and peeling of PAH with increasing pH is explained by the proximity of pH 7 to the point of charge exchange of the amino group of polyelectrolyte, as a result of the dissociation of the microcapsule.


1980 ◽  
Vol 47 (1) ◽  
pp. 113-122 ◽  
Author(s):  
Douglas G. Dalgleish ◽  
Thomas G. Parker

SummaryBinding isotherms for the calcium ion–αsl-casein system have been measured, as functions of ionic strength, temperature, and pH, and the isotherms have been analysed in terms of binding constants modified by substitution effects. The results demonstrate that the strength of binding is increased with increasing temperature and decreased by increasing ionic strength or decreasing pH, all of which may be explained semi-quantitatively. Parallel studies on the precipitability of the αsl-casein–Ca2+ complexes showed that there is considerable variation in the extent of calcium binding required to initiate precipitation of the protein, and in the calcium concentration necessary to achieve the required extent of ligand binding.


Lead atoms, present as a trace additive in a series of premixed H 2 –N 2 –O 2 flames, were excited to the 7 3 P o 1 state by 405.8 nm radiation from a nitrogen-pumped dye laser. Rate constants for spin-orbit relaxation to the 7 3 P o 0 state were obtained separately for collisions with atomic hydrogen and for collisions with the bulk flame gas, by measuring the relative intensities of fluorescence at 364.0 and 368.3 nm as a function of distance from the reaction zone in each flame. For hydrogen atoms the rate constant is typically 1 x 10 -9 cm 3 molecule -1 s -1 , decreasing with increasing temperature; for the bulk flame gas the rate constant is typically 1 x 10 -11 cm 3 molecule -1 s -1 , increasing with increasing temperature. Numerical calculations for model systems, with the use of Morse and Lennard-Jones potentials to describe the interaction of the colliding species, show that the negative temperature coefficient found for atomic hydrogen can be attributed to the crossing of attractive potential curves, corresponding to bound excited states of PbH.


Sign in / Sign up

Export Citation Format

Share Document