Effect of grazing fresh legumes or feeding silage on fatty acids and enzymes involved in the synthesis of milk fat in dairy cows

2010 ◽  
Vol 77 (3) ◽  
pp. 337-342 ◽  
Author(s):  
Lars Wiking ◽  
Peter K Theil ◽  
Jacob H Nielsen ◽  
Martin T Sørensen

The impact of fresh legume types or silage on the composition of milk fatty acids and transcription of enzymes involved in the synthesis of milk fat in cows was studied. Three groups of cows grazed high proportions of white clover, red clover and lucerne, respectively. A fourth group of cows was fed maize/grass silage. The cows grazing high proportions of legumes produced significantly more 18:1 trans-11, 18:2 cis9-trans11, 18:2 trans10-cis12 and 18:3 fatty acids than cows fed silage. White clover and lucerne grazing resulted in significantly lower output of 18:1 trans9 in milk than red clover grazing and maize/grass silages. Transcription of stearoyl-CoA desaturase (SCD) in mammary tissue was significantly increased by grazing high proportions of legume whereas fatty acid synthase and acetyl-CoA carboxylase were not affected by type of feeding. Furthermore, average milk fat globule diameter was correlated to daily milk fat yield but was not affected by feeding. Although the fresh forage affected the transcription of SCD in mammary tissue, the largest effects were on the trans11-based fatty acids. It is concluded that type of forage, i.e. fresh or silage, had a greater impact on rumen fermentation pattern than on transcription of enzymes involved in the synthesis of milk fat.

Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1111
Author(s):  
Maria P. Mollica ◽  
Giovanna Trinchese ◽  
Fabiano Cimmino ◽  
Eduardo Penna ◽  
Gina Cavaliere ◽  
...  

Milk contains several important nutrients that are beneficial for human health. This review considers the nutritional qualities of essential fatty acids (FAs), especially omega-3 (ω-3) and omega-6 (ω-6) polyunsaturated fatty acids (PUFAs) present in milk from ruminant and non-ruminant species. In particular, the impact of milk fatty acids on metabolism is discussed, including its effects on the central nervous system. In addition, we presented data indicating how animal feeding—the main way to modify milk fat composition—may have a potential impact on human health, and how rearing and feeding systems strongly affect milk quality within the same animal species. Finally, we have presented the results of in vivo studies aimed at supporting the beneficial effects of milk FA intake in animal models, and the factors limiting their transferability to humans were discussed.


1993 ◽  
Vol 57 (2) ◽  
pp. 319-322 ◽  
Author(s):  
P. Polidori ◽  
G. L. Maggi ◽  
V. M. Moretti ◽  
F. Valfrè ◽  
P. Navarotto

Commencing on day 100 ± 10 of lactation, 10 Italian Friesian cows averaging 32·6 kg milk per day were injected biweekly with recombinant bovine somatotropin (BST), while 10 other cows averaging 33-4 kg milk per day were injected with a placebo. Cows were offered ad libitum a total mixed diet throughout the lactation. The experiment lasted 16 weeks; milk samples were taken before and 16, 62 and 91 days after the commencement of BST injection. The objective was to determine the impact of biweekly injections of BST on the synthesis and proportion of milk fatty acids, particularly on cis and trans isomers and on fatty acids with an odd number of carbon atoms (C15 and C17). A decrease in the proportion of shortchain (C4 to C14) fatty acids (P < 0·001) and an increase in the proportion of long-chain (C16 to C20) fatty acids (P < 0·001) were observed in the first period of the treatment. With regard to cis and trans isomers, a considerable increase of the cis isomers (P < 0·001), particularly C18.1cis9 (oleic acid) was observed, while differences in trans isomers were not statistically significant. Concentrations of C15 (pentadecanoic acid) were not affected but heptadecanoic acid (C17) concentration showed a considerable increase (P < 0·01) but only in the sample taken after 16 days.


2018 ◽  
Vol 138 ◽  
pp. 52-59 ◽  
Author(s):  
Kumar S.D. Kothapalli ◽  
Hui Gyu Park ◽  
Xiaoxian Guo ◽  
Xuepeng Sun ◽  
James Zou ◽  
...  

2021 ◽  
Vol 1 (19) ◽  
pp. 352-354
Author(s):  
E.A. Gladyr ◽  
L.P. Ignatieva ◽  
I.A. Lashneva ◽  
A.A. Kositsin ◽  
O.A. Artemieva ◽  
...  

The first results of the genome-wide associations analysis for fatty acids composition in cow milk by Russian Holsteinized Black-and-White and Holstein breeds were obtained. Genomic regions (QTL) associated with milk fat percentage, fatty acids synthesis, functional parameters of linear type for udder and leg traits, fertility features have been detected.


2000 ◽  
Vol 279 (5) ◽  
pp. C1595-C1602 ◽  
Author(s):  
Timothy A. Reinhardt ◽  
Adelaida G. Filoteo ◽  
John T. Penniston ◽  
Ronald L. Horst

Protein expression of plasma membrane Ca2+-ATPases (PMCAs) and the putative Golgi secretory pathway Ca2+-ATPase (SPCA) was examined in rat mammary tissue. As lactation started, PMCA protein expression increased dramatically, and this increased expression paralleled milk production. Mammary PMCA was primarily PMCA2b but was ∼4,000 daltons larger than expected. RT-PCR showed that the primary mammary PMCA2b transcript was alternatively spliced, at splice site A, to include an additional 135 bp, resulting in the insertion of 45 amino acids. This splice form is designated 2bw. PMCA2bw is secreted into milk, associated with the milk fat globule membrane. Therefore, PMCA2bw is located on the apical membrane of the secretory cell. Smaller amounts of PMCA1b and 4b protein were found in mammary tissue. PMCA4b was the major PMCA expressed in developing tissue, and its level declined as lactation started. PMCA1b expression increased moderately during lactation. SPCA protein expression increased 1 wk before parturition and increased further as lactation proceeded. The abundance and cell location of PMCA2b suggest that it is important for macro-Ca2+ homeostasis in lactating tissue. The pattern of expression and abundance of SPCA suggest that it is a candidate for the Golgi Ca2+-ATPase.


2006 ◽  
Vol 89 (3) ◽  
pp. 1004-1009 ◽  
Author(s):  
L. Wiking ◽  
J.H. Nielsen ◽  
A.-K. Båvius ◽  
A. Edvardsson ◽  
K. Svennersten-Sjaunja

1974 ◽  
Vol 41 (2) ◽  
pp. 175-191 ◽  
Author(s):  
G. H. Smith ◽  
S. McCarthy ◽  
J. A. F. Rook

SummaryThe relative importance of β-hydroxybutyric acid (BHBA) and acetate as precursors for milk-fat synthesis was studied in lactating goats by infusing separately tracer quantities of [3−14C]DL-BHBA and [1−14C]acetate into the jugular vein, and [1−14C]butyrate into the portal vein. The concentrations and specific radioactivities of blood plasma constituents, the yields and specific radioactivities of individual milk fatty acids and the relative radioactivities of individual carbon atoms of milk fatty acids were determined.The infusion of [1−14C]butyrate resulted in the appearance of labelled BHBA in the blood plasma which behaved almost identically with infused [14C]BHBA as a precursor for milk fatty acids.The relative radioactivity of carbon atoms of the fatty acids of milk fat following the infusions provided direct evidence that BHBA had provided an intact 4-carbon unit at the methyl end of each fatty-acid chain. Acetate provided 2-carbon units both for the elongation of the 4-carbon units and for complete de novo synthesis. BHBA also provided 2-carbon units which behaved in a similar fashion to those from acetate.Acetate and BHBA together accounted for all of the C4–C12 acids of milk fat, about 75% of the C14, 45% of the C16 and 10% of the C18.The total contributions of the various precursors to the fatty acids of milk fat were: acetate 42%, BHBA 9·4% and other plasma precursors (by difference) 48·6%.


Author(s):  
Ludmila Křížová ◽  
Jiří Třináctý ◽  
Jarmila Svobodová ◽  
Michal Richter ◽  
Vladimír Černý ◽  
...  

The objective of this study was to determine the effect of supplemental lysine (Lys), methionine (Met) or both added to diet of dairy cows in the form of rumen-protected (RP) tablets on changes in milk fatty acids (FA) profile. The trial was carried out on four lactating Holstein cows in the form of Latin square design and was divided into 4 periods of 14 d (10-d preliminary period and a 4-d experimental period). The four treatments were as follows: C – control without amino acids (AA) supplementation, L – supplement of RP Lys, M – supplement of RP Met and ML – supplement of RP Met and Lys. Cows were fed on a diet based on maize silage, lucerne hay and supplemental mixture. Milk yield in ML (34.18 kg/d) was higher than in L or M (32.46 kg and 32.13 kg, respectively, P < 0.05) and tended to be higher than in C (33.33 kg/d, P > 0.05). Protein yield in ML (1054 g / d) was higher than that found in C, L or M (990, 998 or 968 g / d, respectively, P < 0.05). Milk fat content and yield in C and ML was higher in comparison to L and M (P < 0.05). Content of short-chain FA (C 4:0–C 12:0) was not affected by the treatment except of L that was lower than in C (P < 0.05). Content of medium-chain FA in M was lower compared to C, L or ML (P < 0.05). The content of long-chain FA in M was significantly higher than in other groups (P < 0.05). The total content of SFA in M was lower than in C or ML (P < 0.05) and tended to be lower than in L. Contents of UFA, MUFA and PUFA in M were higher than in C and ML (P < 0.05).


Sign in / Sign up

Export Citation Format

Share Document