Passive wing pitch reversal in insect flight

2007 ◽  
Vol 591 ◽  
pp. 321-337 ◽  
Author(s):  
ATTILA J. BERGOU ◽  
SHENG XU ◽  
Z. JANE WANG

Wing pitch reversal, the rapid change of angle of attack near stroke transition, represents a difference between hovering with flapping wings and with a continuously rotating blade (e.g. helicopter flight). Although insects have the musculature to control the wing pitch during flight, we show here that aerodynamic and wing inertia forces are sufficient to pitch the wing without the aid of the muscles. We study the passive nature of wing pitching in several observed wing kinematics, including the wing motion of a tethered dragonfly, Libellula pulchella, hovering fruitfly, hovering hawkmoth and simplified dragonfly hovering kinematics. To determine whether the pitching is passive, we calculate rotational power about the torsion axis owing to aerodynamic and wing inertial forces. This is done using both direct numerical simulations and quasi-steady fluid force models. We find that, in all the cases studied here, the net rotational power is negative, signifying that the fluid force assists rather than resists the wing pitching. To further understand the generality of these results, we use the quasi-steady force model to analyse the effect of the components of the fluid forces at pitch reversal, and predict the conditions under which the wing pitch reversal is passive. These results suggest the pitching motion of the wings can be passive in insect flight.

Author(s):  
Daniel B. Roemer ◽  
Per Johansen ◽  
Henrik C. Pedersen ◽  
Torben O. Andersen

Switching valves experience opposing fluid forces due to movement of the moving member itself, as the surrounding fluid volume must move to accommodate the movement. This movement-induced fluid force may be divided into three main components; the added mass term, the viscous term and the so-called history term. For general valve geometries there are no simple solution to either of these terms. During development and design of such switching valves, it is therefore, common practice to use simple models to describe the opposing fluid forces, neglecting all but the viscous term which is determined based on shearing areas and venting channels. For fast acting valves the opposing fluid force may retard the valve performance significantly, if appropriate measures are not taken during the valve design. Unsteady Computational Fluid Dynamics (CFD) simulations are available to simulate the total fluid force, but these models are computationally expensive and are not suitable for evaluating large numbers of different operation conditions or even design optimization. In the present paper, an effort is done to describe these fluid forces and their origin. An example of the total opposing fluid force is given using an analytically solvable example, showing the explicit form of the force terms and highlighting the significance of the added mass and history term in certain fast switching valve applications. A general approximate model for arbitrary valve geometries is then proposed with offset in the analytic model terms. The coefficients in this general model are determined based on CFD analyses, which are evaluated throughout the movement range of the moving member on an example valve geometry. The proposed model is compared to complete unsteady CFD simulations and found to generally predict the opposing fluid force well and gives accurate predictions under certain conditions. The proposed model is suitable for valve designers who need a computationally inexpensive fluid force model suitable for optimization routines or efficient dynamic models.


1991 ◽  
Vol 113 (3) ◽  
pp. 316-324 ◽  
Author(s):  
A. Muszynska ◽  
J. W. Grant

This paper is a continuation of the series of papers on application of the improved fluid force model for lightly loaded shafts rotating in a fluid environment. The fluid force model is based on the strength of the circumferential flow. The considered two-mode rotor is supported in two fluid-lubricated bearings, thus it contains two potential sources of instability. The eigenvalue solution predicts thresholds of stability and provide natural frequencies and modes of the system, including the flow-induced mode. The nonlinear model of the rotor/bearing system allows for evaluation of parameters of after instability onset self-excited vibrations (whirl and whip). Experimental data illustrate the dynamic phenomena predicted by the model. In particular, they show an undocumented new phenomenon, the simultaneous existence of two whip vibrations with frequencies corresponding to two modes of the rotor. A radial preload of the rotor results in journal eccentric position inside the bearings, which causes specific changes in the fluid forces (an increase of radial stiffness and reduction of circumferential velocity) providing better stability of the rotor. This effect is illustrated by the experimental data, as well as is predicted by the model.


Author(s):  
Agnes Muszynska ◽  
John W. Grant

This paper is a continuation of the series of papers on application of the improved fluid force model for lightly loaded shafts rotating in a fluid environment. The fluid force model is based on the strength of the circumferential flow. The considered two–mode rotor is supported in two fluid–lubricated bearings, thus it contains two potential sources of instability. The eigenvalue solution predicts thresholds of stability and provide natural frequencies and modes of the system, including the flow–induced modes The nonlinear model of the rotor/bearing system allows for evaluation of parameters of after instability onset self–excited vibrations (whirl and whip). Experimental data illustrate the dynamic phenomena predicted by the model. In particular, they show an undocumented new phenomenon, the simultaneous existence of two whip vibrations with frequencies corresponding to two modes of the rotor. A radial preload of the rotor results in specific changes of the fluid forces (an increase of radial stiffness and reduction of circumferential velocity) providing better stability of the rotor. This effect predicted by the model is illustrated by the experimental data.


Author(s):  
Koya Yamada ◽  
Atsushi Ikemoto ◽  
Tsuyoshi Inoue ◽  
Masaharu Uchiumi

Rotor-dynamic fluid force (RD fluid force) of turbomachinery is one of the causes of the shaft vibration problem. Bulk flow theory is the method for analyzing this RD fluid force, and it has been widely used in the design stage of machine. The conventional bulk flow theory has been carried out under the assumption of concentric circular shaft's orbit with a small amplitude. However, actual rotating machinery's operating condition often does not hold this assumption, for example, existence of static load on the machinery causes static eccentricity. In particular, when such a static eccentricity is significant, the nonlinearity of RD fluid force may increase and become non-negligible. Therefore, conventional bulk flow theory is not applicable for the analysis of the RD fluid force in such a situation. In this paper, the RD fluid force of the annular plain seal in the case of circular whirling orbit with static eccentricity is investigated. The case with both the significant static eccentricity and the moderate whirling amplitude is considered, and the perturbation analysis of the bulk-flow theory is extended to investigate the RD fluid force in such cases. In this analysis, the assumption of the perturbation solution is extended to both static terms and whirling terms up to the third order. Then, the additional terms are caused by the coupling of these terms through nonlinearity, and these three kinds of terms are considered in the extended perturbation analysis of the bulk flow theory. As a result, a set of nonlinear analytical equations of the extended perturbation analysis of the bulk flow theory, for the case with both the significant static eccentricity and the moderate whirling amplitude, is deduced. The RD fluid force for such cases is analyzed, and the occurrence of constant component, backward synchronous component, and super-harmonic components in the RD fluid force is observed in addition to the forward synchronous component. The representation of RD fluid force coefficients (RD coefficients) are modified for the case with significant static eccentricity, and the variation of RD fluid force coefficients for the magnitude of static eccentricity is analyzed. These analytical results of RD fluid force and its RD coefficients are compared with the numerical results using finite difference analysis and experimental results. As a result, the validity of the extended perturbation analysis of the bulk-flow theory for the case with both the significant static eccentricity and the moderate whirling amplitude is confirmed.


2012 ◽  
Vol 476-478 ◽  
pp. 2485-2488
Author(s):  
Mei Jun Hu ◽  
Xing Yao Yan ◽  
Jin Yao Yan

There is a force peak at the beginning of each stroke during the insect flight, this force peak contributes a lot to the total aerodynamic force. To build a man made insect inspired man-made micro aero vehicle, this force need to be considered in the aero force model, and this model should as simple as possible in order to be used in feedback real-time control. Here we presented a simplified model to take the medium added mass effect of the wing into account. Simulated results show a high force peak at the beginning of each stroke and are quite similar to the measured forces on the physical wing model which were carried out by Dickinson et.al.


Author(s):  
J X Zhang

Approximate expressions are obtained for static fluid pressure and force for a centrally grooved squeeze film damper (SFD) resting at an equilibrium position without vibration. The analysis shows that, to some extent, grooved SFDs may share some characteristics with hydrostatic bearings, due to the existence of the lubricant supply pressure. Thus static fluid force and hence oil stiffness may exist in SFDs, in addition to the conventional inertial and damping coefficients for SFDs. This paper is solely focused on the static fluid forces and oil stiffness generated in an SFD with a finite length groove. Flow continuity is used at the centre of the groove, which takes into account the effects of the inlet oil flowrate and oil supply pressure. This use of flow continuity differs substantially from the traditional use of constant pressure in the central groove, and it provides better results. At the interface between the groove and the thin film land, a step bearing model with ignored fluid inertia is employed. It is verified by both the theory and previous experiments that the static fluid force and stiffness are linearly proportional to both the lubricant supply pressure and the eccentricity ratio of the SFD journal.


2003 ◽  
Vol 125 (5) ◽  
pp. 786-795 ◽  
Author(s):  
Yoshiki Yoshida ◽  
Yoshinobu Tsujimoto ◽  
Goh Morimoto ◽  
Hiroki Nishida ◽  
Shigeki Morii

This paper reports an experimental investigation of the rotordynamic fluid force and moment on a centrifugal impeller with three types of wear-ring seals; i.e., a face seal and two types of toothed seals. The impeller is equipped with a vaneless diffuser. Rotordynamic fluid forces and moments on the impeller in whirling motion were measured directly by using four-axis force sensor. Unsteady pressures were measured at several locations in the diffuser. It was found that, (1) at low flow rate, the fluid force and fluid force moment become maximum at a certain whirling speed caused by a coupling between the whirl motion and vaneless diffuser rotating stall and (2) the seal geometry with axial seal affects the direction of the coupled fluid force relative to the direction of eccentricity through the change in the unsteady leakage flow due to the whirl.


Author(s):  
Pierre Moussou ◽  
Adrien Guilloux ◽  
Eric Boccaccio ◽  
Guillaume Ricciardi

Damping is known to be a major parameter in the seismic design of nuclear facilities. Of special interest is the case of fuel assemblies in PWR plants, which, unlike other components, are submitted to axial flows: it has been known since the late 80s that their frequency response to lateral excitations was largely dependent on the flow velocity, and the issue raised by this observation is to determine a consistent fluid force model which could be used in seismic design. In the scientific literature, the standard model of fluid forces exerted upon an oscillating slender body was originally derived by Lighthill, and it involves a lift coefficient which, up to a reference frame shift, describes the force generated by a small angle of inclination of the body axis against the flow direction. Recent works by Divaret et al. have provided a value of this lift coefficient equal to 0.11 for a single cylinder, and to 0.18 for a square array of 5 by 8 cylinders, the Reynolds numbers being in the range of 104. Sticking to the idea that the damping stems from the local angle of inclination of the structure against the flow direction, the present study revisits recent tests performed in the Hermes test rig of CEA Cadarache, where a fuel assembly was submitted to incipient flow velocities varying from 1.5 to 5m.s−1, and to a lateral force exerted upon the middle grid, generating displacements in the ranges of a few mm and of a few Hz. Under the assumption that the fuel assembly behaves in an approximately linear manner and that it undergoes harmonic deformations close to its first natural mode shape, the dissipative fluid force can be expressed by an adequate combination of the hydraulic cylinder force and of the structure displacements. A lift coefficient equal to 0.3–0.4 is obtained with this procedure, which stands for the overall fuel bundle, rods and grids included.


2013 ◽  
Vol 10 (85) ◽  
pp. 20130361 ◽  
Author(s):  
Chang-kwon Kang ◽  
Wei Shyy

We report a comprehensive scaling law and novel lift generation mechanisms relevant to the aerodynamic functions of structural flexibility in insect flight. Using a Navier–Stokes equation solver, fully coupled to a structural dynamics solver, we consider the hovering motion of a wing of insect size, in which the dynamics of fluid–structure interaction leads to passive wing rotation. Lift generated on the flexible wing scales with the relative shape deformation parameter, whereas the optimal lift is obtained when the wing deformation synchronizes with the imposed translation, consistent with previously reported observations for fruit flies and honeybees. Systematic comparisons with rigid wings illustrate that the nonlinear response in wing motion results in a greater peak angle compared with a simple harmonic motion, yielding higher lift. Moreover, the compliant wing streamlines its shape via camber deformation to mitigate the nonlinear lift-degrading wing–wake interaction to further enhance lift. These bioinspired aeroelastic mechanisms can be used in the development of flapping wing micro-robots.


Author(s):  
Hiroki Manabe ◽  
Shota Yabui ◽  
Hideyuki Inoue ◽  
Tsuyoshi Inoue

In turbomachinery, seals are used to prevent fluid leakage. At seal part, rotordynamic fluid force (RD fluid force), which causes whirling motion of rotor, is generated. Under certain conditions, the RD fluid force may contribute to instability of the machine. There are several cases that the whirling is accompanied by eccentricity due to the influence of gravity, or the whirling orbit becomes elliptical due to the influence of the bearing support anisotropy. In these cases, mathematical modeling of the RD fluid forces becomes increasingly complex. As a result, the RD fluid force measurement is more preferable. To improve the measurement and evaluation technology of the RD fluid force, a method to arbitrarily control whirling of the orbit is required. In this paper, RD fluid force measurement by controlling the shape of the orbit using an active magnetic bearing (AMB) is proposed. A contact type mechanical seal is used as a test specimen. When the rotating shaft is whirling, the RD fluid force due to hydrodynamics lubrication and the frictional force due to contact occur on the sliding surface. The resultant force of these forces is taken as the reaction force of mechanical seal and the measurement is performed. The measured reaction force of the mechanical seal is compared with simulation results and the validity of the proposed measurement method is confirmed.


Sign in / Sign up

Export Citation Format

Share Document