Growth and equilibrium of short gravity waves in a wind-wave tank

1977 ◽  
Vol 82 (4) ◽  
pp. 767-793 ◽  
Author(s):  
W. J. Plant ◽  
J. W. Wright

Temporal and spatial development of short gravity waves in a linear wind-wave tank has been measured for wind speeds up to 15 m/s using microwave Doppler spectrometry. Surface waves of wavelength 4·1 cm, 9·8 cm, 16·5 cm and 36 cm were observed as a function of fetch, wind speed and wind duration. The waves grew exponentially from inception until they were about 10 dB smaller than their maximum height, and the temporal growth and spectral transport (spatial growth) rates were about equal when the wave amplitude was sufficiently small. The amplitude of a short gravity wave of fixed wavelength was found to decrease substantially at winds, fetches or durations greater than those at which the short gravity wave was approximately the dominant wave; such phenomena are sometimes referred to as overshoot. The dominant short gravity wave was observed to reach a maximum amplitude which depended only on wavelength, showing that wave breaking induced by an augmented wind drift cannot be the primary limitation to the wave height. Waves travelling against the wind were observed for wavelengths of 9·8 cm, 16·5 cm and 36 cm and were shown to be generated by the air flow at low wind speeds.Measured initial growth rates for 16·5 cm and 36 cm waves were greater than expected, suggesting the existence of a growth mechanism in addition to direct transfer from the wind via linear instability of the boundary-layer flow. Initial temporal growth rates and spectral transport rates were compared to yield an experimental determination of the magnitude of the sum of nonlinear interactions and dissipation in short gravity waves. If the steady-state energy input in the neighbourhood of the dominant wave occurs at the measured initial temporal growth rates, then most of the energy input is locally dissipated; relatively little is advected away. Calculated gravitycapillary nonlinear energy transfer rates match those determined from initial growth rates for 9·8 cm waves and the gravity–capillary wave interaction continues to be significant for waves as long as 16·5 cm. For longer waves the gravity–capillary interaction is too small to bring the short gravity wave to a steady state when it is the dominant wave of the wind-wave system.

2017 ◽  
Vol 34 (10) ◽  
pp. 2129-2139 ◽  
Author(s):  
Naohisa Takagaki ◽  
Satoru Komori ◽  
Mizuki Ishida ◽  
Koji Iwano ◽  
Ryoichi Kurose ◽  
...  

AbstractIt is important to develop a wave-generation method for extending the fetch in laboratory experiments, because previous laboratory studies were limited to the fetch shorter than several dozen meters. A new wave-generation method is proposed for generating wind waves under long-fetch conditions in a wind-wave tank, using a programmable irregular-wave generator. This new method is named a loop-type wave-generation method (LTWGM), because the waves with wave characteristics close to the wind waves measured at the end of the tank are reproduced at the entrance of the tank by the programmable irregular-wave generator and the mechanical wave generation is repeated at the entrance in order to increase the fetch. Water-level fluctuation is measured at both normal and extremely high wind speeds using resistance-type wave gauges. The results show that, at both wind speeds, LTWGM can produce wind waves with long fetches exceeding the length of the wind-wave tank. It is observed that the spectrum of wind waves with a long fetch reproduced by a wave generator is consistent with that of pure wind-driven waves without a wave generator. The fetch laws between the significant wave height and the peak frequency are also confirmed for the wind waves under long-fetch conditions. This implies that the ideal wind waves under long-fetch conditions can be reproduced using LTWGM with the programmable irregular-wave generator.


Author(s):  
Fabio Vargas ◽  
Guotao Yang ◽  
Paulo Batista ◽  
Delano Gobbi

Amplitude growth rates of monochromatic gravity waves were estimated and compared from multiple instrument measurements carried out in Brazil. Wave dynamic parameters were obtained from sodium density profiles from lidar observations carried out in Sao Jose dos Campos (23°S, 46°W), while all-sky images of multiple airglow layers provided amplitudes and parameters of waves over Cachoeira Paulista (23°S, 45°W). Growth rates of gravity wave amplitudes from lidar and airglow imager data were consistent with dissipative wave behavior. Only a small amount of the observed wave events presented freely propagating behavior. Part of the observed waves presented saturated amplitude. The general saturated/damped behavior is consistent with diffusive filtering processes imposing limits to amplitude growth rates of the observed gravity waves.


1974 ◽  
Vol 63 (4) ◽  
pp. 801-825 ◽  
Author(s):  
Terrence M. Joyce

A laboratory study has been undertaken to measure the energy transfer from two surface waves to one internal gravity wave in a nonlinear, resonant interaction. The interacting waves form triads for which \[ \sigma_{1s} - \sigma_{2s} \pm\sigma_1 = 0\quad {\rm and}\quad \kappa_{1s} - \kappa_2s} \pm \kappa_I = 0; \] σj and κj being the frequency and wavenumber of the jth wave. Unlike previously published results involving single triplets of interacting waves, all waves here considered are standing waves. For both a diffuse, two-layer density field and a linearly increasing density with depth, the growth to steady state of a resonant internal wave is observed while two deep water surface eigen-modes are simultaneously forced by a paddle. Internal-wave amplitudes, phases and initial growth rates are compared with theoretical results derived assuming an arbitrary Boussinesq stratification, viscous dissipation and slight detuning of the internal wave. Inclusion of viscous dissipation and slight detuning permit predictions of steady-state amplitudes and phases as well as initial growth rates. Satisfactory agreement is found between predicted and measured amplitudes and phases. Results also suggest that the internal wave in a resonant triad can act as a catalyst, permitting appreciable energy transfer among surface waves.


1977 ◽  
Vol 81 (2) ◽  
pp. 225-240 ◽  
Author(s):  
Peter H. Y. Lee

The effects of gravity waves on wind-generated ripples are studied experimentally by means of Doppler spectra obtained through microwave Bragg backscattering. The measurements were made at 9·23 GHz with incidence angles of between 45° and 55°. It is found from the Doppler frequency shift that an increase in the speed of Bragg waves (ripples) of wavelength approximately 2 cm can be detected when a gravity wave is propagated into a pre-existing wind-wave field. The Doppler frequency shift corresponds, to first order, to the orbital speed of the gravity wave. Further studies, using a conditional sampling technique, reveal that the Bragg scatterers are localized on the gravity wave's crest. The mechanism leading to the ‘localization’ is as yet unidentified. Ratios of gravity wavelength to Bragg (ripple) wavelength ranging from 13 to 35 have been studied.


2008 ◽  
Vol 38 (9) ◽  
pp. 2038-2055 ◽  
Author(s):  
Guillemette Caulliez ◽  
Vladimir Makin ◽  
Vladimir Kudryavtsev

Abstract The specific properties of the turbulent wind stress and the related wind wave field are investigated in a dedicated laboratory experiment for a wide range of wind speeds and fetches, and the results are analyzed using the wind-over-waves coupling model. Compared to long-fetch ocean wave fields, wind wave fields observed at very short fetches are characterized by higher significant dominant wave steepness but a much smaller macroscale wave breaking rate. The surface drag dependence on fetch and wind then closely follows the dominant wave steepness dependence. It is found that the dimensionless roughness length z*0 varies not only with wind forcing (or inverse wave age) but also with fetch. At a fixed fetch, when gravity waves develop, z*0 decreases with wind forcing according to a −1/2 power law. Taking into account the peculiarities of laboratory wave fields, the WOWC model predicts the measured wind stress values rather well. The relative contributions to surface drag of the equilibrium-range wave-induced stress and the airflow separation stress due to wave breaking remain small, even at high wind speeds. At moderate to strong winds, the form drag resulting from dominant waves represents the major wind stress component.


2020 ◽  
Author(s):  
Young-Ha Kim ◽  
Gergely Bölöni ◽  
Sebastian Borchert ◽  
Hye-Yeong Chun ◽  
Ulrich Achatz

<p class="Normal tm5"><span class="tm6">The intermittency of gravity waves (GWs) is investigated using Multi-Scale Gravity Wave Model (MS-GWaM) implemented in the upper-atmosphere extension of ICON model. The intermittency of GWs is originated from that of wave sources but altered during propagation of the waves. Conventional GW parametrization (GWP), which diagnoses vertical profiles of GW properties under the steady-state assumption, can take into account the source intermittency if the GWP employs flow-dependent sources, while it cannot present the change of intermittency by transient evolutions of GWs. MS-GWaM is a prognostic model that explicitly solves the evolution of positions of waves (as well as their wavenumbers and amplitudes) in time and thus capable of describing the intermittency change. In order to include the source intermittency and variability, we couple the convective source, as diagnosed by subgrid-scale cumulus parametrization in ICON, to MS-GWaM, based on an analytic formulation of GW response to this source. In addition to this, a spatio-temporally uniform, persistent source is prescribed in the extratropics to take into account other non-orographic sources. Orographic sources are currently not used. The GW intermittency is measured by the Gini index, and is found to be quite high in the tropics, compared to that in the extratropics. In both regions, the index has similar values to those obtained from superpressure balloon observations reported in previous studies. A control experiment is performed using GWP based on the steady-state assumption, but coupled to the same wave sources, to assess the effects of transient modelling using MS-GWaM on the simulated intermittency. From comparison to the control experiment, the intermittency is found to increase largely for GWs from the uniform source but to decrease for convective GWs by the transient modelling.</span></p>


2004 ◽  
Vol 21 (12) ◽  
pp. 1925-1935 ◽  
Author(s):  
Peter Bowyer ◽  
David Woolf

Abstract Gas exchange and bubble-induced supersaturation were measured in a wind-wave tank using total gas saturation meters. The water in the tank was subjected to bubbling using a large number of frits at a depth of 0.6 m. A simple linear model of bubble-mediated gas exchange implies that this should force an equilibrium supersaturation of 3%. This is confirmed by experiment, but a small additional steady-state supersaturation is also forced by warming. The total steady-state supersaturation is approached asymptotically. When the bubblers were switched off, the total gas pressure approached a new steady state at much lower supersaturation, at a rate that depended on the state of the wind and waves in the tank. The rates of approach on the various equilibria enabled the gas flux across the surface of the bubbles or across the air–water interface to be calculated. In addition a series of experiments was conducted where the water was subjected to bubbling in the presence of wind or wind and paddle waves: in this case gas invasion from the bubbles was balanced by gas evasion near or at the surface resulting in an equilibrium at <3% and enabling the relative strength of the invasion and evasion to be estimated. Gas concentrations could be measured in a rapid, automated manner using simple apparatus. To derive gas fluxes, corrections for changes in water temperature and fluctuations in air pressure are necessary, and these are quantified. In addition, transient fluctuations in gas concentration at the start of bubbling periods allowed mixing within the tank to be observed.


2017 ◽  
Vol 29 (1) ◽  
pp. 016601 ◽  
Author(s):  
Andrey Zavadsky ◽  
Alvise Benetazzo ◽  
Lev Shemer

2020 ◽  
Vol 50 (11) ◽  
pp. 3295-3307
Author(s):  
Shuiqing Li ◽  
Zhongshui Zou ◽  
Dongliang Zhao ◽  
Yijun Hou

AbstractWind stress depends on the sea surface roughness, which can be significantly changed by surface wind waves. Based on observations from a fixed platform, we examined the dependences of the sea surface roughness length on dominant wave characteristic parameters (wave age, wave steepness) at moderate wind speeds and under mixed-wave conditions. No obvious trend was found in the wave steepness dependence of sea surface roughness, but a wave steepness threshold behavior was readily identified in the wave age dependence of sea surface roughness. The influence of dominant wind waves on the surface roughness was illustrated using a wind–wave coupling model. The wave steepness threshold behavior is assumed to be related to the onset of dominant wave breaking. The important role of the interaction between swell and wind wave was highlighted, as swell can absorb energy from locally generated wind wave, which subsequently reduces the wave steepness and the probability of dominant wave breaking.


2008 ◽  
Vol 26 (11) ◽  
pp. 3235-3252 ◽  
Author(s):  
D. C. Fritts ◽  
S. L. Vadas ◽  
D. M. Riggin ◽  
M. A. Abdu ◽  
I. S. Batista ◽  
...  

Abstract. The Spread F Experiment, or SpreadFEx, was performed from September to November 2005 to define the potential role of neutral atmosphere dynamics, primarily gravity waves propagating upward from the lower atmosphere, in seeding equatorial spread F (ESF) and plasma bubbles extending to higher altitudes. A description of the SpreadFEx campaign motivations, goals, instrumentation, and structure, and an overview of the results presented in this special issue, are provided by Fritts et al. (2008a). The various analyses of neutral atmosphere and ionosphere dynamics and structure described in this special issue provide enticing evidence of gravity waves arising from deep convection in plasma bubble seeding at the bottomside F layer. Our purpose here is to employ these results to estimate gravity wave characteristics at the bottomside F layer, and to assess their possible contributions to optimal seeding conditions for ESF and plasma instability growth rates. We also assess expected tidal influences on the environment in which plasma bubble seeding occurs, given their apparent large wind and temperature amplitudes at these altitudes. We conclude 1) that gravity waves can achieve large amplitudes at the bottomside F layer, 2) that tidal winds likely control the orientations of the gravity waves that attain the highest altitudes and have the greatest effects, 3) that the favored gravity wave orientations enhance most or all of the parameters influencing plasma instability growth rates, and 4) that gravity wave and tidal structures acting together have an even greater potential impact on plasma instability growth rates and plasma bubble seeding.


Sign in / Sign up

Export Citation Format

Share Document