Olfactory disturbances in ageing with and without dementia: towards new diagnostic tools

2017 ◽  
Vol 131 (7) ◽  
pp. 572-579 ◽  
Author(s):  
A Gros ◽  
V Manera ◽  
C A De March ◽  
N Guevara ◽  
A König ◽  
...  

AbstractBackground:Olfactory disorders increase with age and often affect elderly people who have pre-dementia or dementia. Despite the frequent occurrence of olfactory changes at the early stages of neurodegenerative disorders such as Alzheimer's disease, olfactory disorders are rarely assessed in daily clinical practice, mainly due to a lack of standardised assessment tools. The aims of this review were to (1) summarise the existing literature on olfactory disorders in ageing populations and patients with neurodegenerative disorders; (2) present the strengths and weaknesses of current olfactory disorder assessment tools; and (3) discuss the benefits of developing specific olfactory tests for neurodegenerative diseases.Methods:A systematic review was performed of literature published between 2000 and 2015 addressing olfactory disorders in elderly people with or without Alzheimer's disease or other related disorders to identify the main tools currently used for olfactory disorder assessment.Results:Olfactory disorder assessment is a promising method for improving both the early and differential diagnosis of Alzheimer's disease. However, the current lack of consensus on which tests should be used does not permit the consistent integration of olfactory disorder assessment into clinical settings.Conclusion:Otolaryngologists are encouraged to use olfactory tests in older adults to help predict the development of neurodegenerative diseases. Olfactory tests should be specifically adapted to assess olfactory disorders in Alzheimer's disease patients.

Author(s):  
Edward Poluyi ◽  
Eghosa Morgan ◽  
Charles Poluyi ◽  
Chibuikem Ikwuegbuenyi ◽  
Grace Imaguezegie

Abstract Background Current epidemiological studies have examined the associations between moderate and severe traumatic brain injury (TBI) and their risks of developing neurodegenerative diseases. Concussion, also known as mild TBI (mTBI), is however quite distinct from moderate or severe TBIs. Only few studies in this burgeoning area have examined concussion—especially repetitive episodes—and neurodegenerative diseases. Thus, no definite relationship has been established between them. Objectives This review will discuss the available literatures linking concussion and amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease (AD). Materials and Methods Given the complexity of this subject, a realist review methodology was selected which includes clarifying the scope and developing a theoretical framework, developing a search strategy, selection and appraisal, data extraction, and synthesis. A detailed literature matrix was set out in order to get relevant and recent findings on this topic. Results Presently, there is no objective clinical test for the diagnosis of concussion because the features are less obvious on physical examination. Absence of an objective test in diagnosing concussion sometimes leads to skepticism when confirming the presence or absence of concussion. Intriguingly, several possible explanations have been proposed in the pathological mechanisms that lead to the development of some neurodegenerative disorders (such as ALS and AD) and concussion but the two major events are deposition of tau proteins (abnormal microtubule proteins) and neuroinflammation, which ranges from glutamate excitotoxicity pathways and inflammatory pathways (which leads to a rise in the metabolic demands of microglia cells and neurons), to mitochondrial function via the oxidative pathways. Conclusion mTBI constitutes majority of brain injuries. However, studies have focused mostly on moderate-to-severe TBI as highlighted above with inconclusive and paucity of studies linking concussion and neurodegenerative disorders. Although, it is highly probable that repetitive concussion (mTBI) and subconcussive head injuries may be risk factors for ALS) and AD from this review. It will be imperative therefore to conduct more research with a focus on mTBI and its association with ALS and AD.


2019 ◽  
Vol 32 (1) ◽  
pp. e100054 ◽  
Author(s):  
Joshua Marvin Anthony Maclin ◽  
Tao Wang ◽  
Shifu Xiao

BackgroundDementia is a chronic brain disorder classified by four distinct diseases that impact cognition and mental degeneration. Each subgroup exhibits similar brain deficiencies and mutations. This review will focus on four dementia subgroups: Alzheimer’s disease, vascular dementia, frontotemporal dementia and dementia Lewy body.AimThe aim of this systematic review is to create a concise overview of unique similarities within dementia used to locate and identify new biomarker methods in diagnosing dementia.Methods123 300 articles published after 2010 were identified from PubMed, JSTOR, WorldCat Online Computer Library and PALNI (Private Academic Library Network of Indiana) using the following search items (in title or abstract): ‘Neurodegenerative Diseases’ OR ‘Biomarkers’ OR ‘Alzheimer’s Disease’ OR ‘Frontal Temporal Lobe Dementia’ OR ‘Vascular Dementia’ OR ‘Dementia Lewy Body’ OR ‘Cerebral Spinal Fluid’ OR ‘Mental Cognitive Impairment’. 47 studies were included in the qualitative synthesis.ResultsEvidence suggested neuroimaging with amyloid positron emission tomography (PET) scanning and newly found PET tracers to be more effective in diagnosing Alzheimer’s and amnesiac mental cognitive impairment than carbon-11 Pittsburgh compound-B radioisotope tracer. Newly created methods to make PET scans more accurate and practical in clinical settings signify a major shift in diagnosing dementia and neurodegenerative diseases.ConclusionVast improvements in neuroimaging techniques have led to newly discovered biomarkers and diagnostics. Neuroimaging with amyloid PET scanning surpasses what had been considered the dominant method of neuroimaging and MRI. Newly created methods to make PET scans more accurate and practical in clinical settings signify a major shift in diagnosing dementia pathology. Continued research and studies must be conducted to improve current findings and streamline methods to further subcategorise neurodegenerative disorders and diagnosis.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 702
Author(s):  
Jaunetta Hill ◽  
Nasser H. Zawia

Neurodegenerative disorders are desperately lacking treatment options. It is imperative that drug repurposing be considered in the fight against neurodegenerative diseases. Fenamates have been studied for efficacy in treating several neurodegenerative diseases. The purpose of this review is to comprehensively present the past and current research on fenamates in the context of neurodegenerative diseases with a special emphasis on tolfenamic acid and Alzheimer’s disease. Furthermore, this review discusses the major molecular pathways modulated by fenamates.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Pade Colligris ◽  
Maria Jesus Perez de Lara ◽  
Basilio Colligris ◽  
Jesus Pintor

Dementia, including Alzheimer’s disease (AD), is a major disorder, leading to several ocular manifestations amongst the elderly population. These visual disorders may be due to retinal nerve degenerative changes, including nerve fibre layer thinning, degeneration of retinal ganglion cells, and changes to vascular parameters. There is no cure for Alzheimer’s, but medicines can slow down the development of many of the classic symptoms, such as loss of memory and communication skills, mood swings, and depression. The disease diagnosis is difficult, and it is only possible through PET scans of the brain, detecting evidence of the accumulation of amyloid and tau. PET is expensive and invasive, requiring the injection of radioactive tracers, which bind with these proteins and glow during scanning. Recently, scientists developed promising eye-scan techniques that may detect Alzheimer’s disease at its earliest stage, before major symptoms appear, leading to improved management of the disease symptoms. In this review, we are discussing the visual abnormalities of Alzheimer’s and other neurodegenerative diseases, focused on ocular functional-visual-structural biomarkers, retinal pathology, and potential novel diagnostic tools.


2020 ◽  
Vol 6 (5) ◽  
pp. 1-7
Author(s):  
Chinonye A Maduagwuna ◽  

Study background: Chronic neuroinflammation is a common emerging hallmark of several neurodegenerative diseases. Alzheimer’s Disease (AD) is the most common cause of dementia among the elderly and is characterized by loss of memory and other cognitive functions.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Nesrine S. El Sayed ◽  
Mamdooh H. Ghoneum

Background. Many neurodegenerative diseases such as Alzheimer’s disease are associated with oxidative stress. Therefore, antioxidant therapy has been suggested for the prevention and treatment of neurodegenerative diseases. Objective. We investigated the ability of the antioxidant Antia to exert a protective effect against sporadic Alzheimer’s disease (SAD) induced in mice. Antia is a natural product that is extracted from the edible yamabushitake mushroom, the gotsukora and kothala himbutu plants, diosgenin (an extract from wild yam tubers), and amla (Indian gooseberry) after treatment with MRN-100. Methods. Single intracerebroventricular (ICV) injection of streptozotocin (STZ) (3 mg/kg) was used for induction of SAD in mice. Antia was injected intraperitoneally (i.p.) in 3 doses (25, 50, and 100 mg/kg/day) for 21 days. Neurobehavioral tests were conducted within 24 h after the last day of injection. Afterwards, mice were sacrificed and their hippocampi were rapidly excised, weighed, and homogenized to be used for measuring biochemical parameters. Results. Treatment with Antia significantly improved mice performance in the Morris water maze. In addition, biochemical analysis showed that Antia exerted a protective effect for several compounds, including GSH, MDA, NF-κB, IL-6, TNF-α, and amyloid β. Further studies with western blot showed the protective effect of Antia for the JAK2/STAT3 pathway. Conclusions. Antia exerts a significant protection against cognitive dysfunction induced by ICV-STZ injection. This effect is achieved through targeting of the amyloidogenic, inflammatory, and oxidative stress pathways. The JAK2/STAT3 pathway plays a protective role for neuroinflammatory and neurodegenerative diseases such as SAD.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Priyanka Joshi ◽  
Michele Perni ◽  
Ryan Limbocker ◽  
Benedetta Mannini ◽  
Sam Casford ◽  
...  

AbstractAge-related changes in cellular metabolism can affect brain homeostasis, creating conditions that are permissive to the onset and progression of neurodegenerative disorders such as Alzheimer’s and Parkinson’s diseases. Although the roles of metabolites have been extensively studied with regard to cellular signaling pathways, their effects on protein aggregation remain relatively unexplored. By computationally analysing the Human Metabolome Database, we identified two endogenous metabolites, carnosine and kynurenic acid, that inhibit the aggregation of the amyloid beta peptide (Aβ) and rescue a C. elegans model of Alzheimer’s disease. We found that these metabolites act by triggering a cytosolic unfolded protein response through the transcription factor HSF-1 and downstream chaperones HSP40/J-proteins DNJ-12 and DNJ-19. These results help rationalise previous observations regarding the possible anti-ageing benefits of these metabolites by providing a mechanism for their action. Taken together, our findings provide a link between metabolite homeostasis and protein homeostasis, which could inspire preventative interventions against neurodegenerative disorders.


Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 371
Author(s):  
Patrycja Pawlik ◽  
Katarzyna Błochowiak

Many neurodegenerative diseases present with progressive neuronal degeneration, which can lead to cognitive and motor impairment. Early screening and diagnosis of neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD) are necessary to begin treatment before the onset of clinical symptoms and slow down the progression of the disease. Biomarkers have shown great potential as a diagnostic tool in the early diagnosis of many diseases, including AD and PD. However, screening for these biomarkers usually includes invasive, complex and expensive methods such as cerebrospinal fluid (CSF) sampling through a lumbar puncture. Researchers are continuously seeking to find a simpler and more reliable diagnostic tool that would be less invasive than CSF sampling. Saliva has been studied as a potential biological fluid that could be used in the diagnosis and early screening of neurodegenerative diseases. This review aims to provide an insight into the current literature concerning salivary biomarkers used in the diagnosis of AD and PD. The most commonly studied salivary biomarkers in AD are β-amyloid1-42/1-40 and TAU protein, as well as α-synuclein and protein deglycase (DJ-1) in PD. Studies continue to be conducted on this subject and researchers are attempting to find correlations between specific biomarkers and early clinical symptoms, which could be key in creating new treatments for patients before the onset of symptoms.


Sign in / Sign up

Export Citation Format

Share Document