Generation and characterization of U937-TR: a platform cell line for inducible gene expression in human macrophages

Parasitology ◽  
2020 ◽  
Vol 147 (13) ◽  
pp. 1524-1531
Author(s):  
Cristian Camilo Galindo ◽  
Carlos Arturo Clavijo-Ramírez

AbstractMonocytes and macrophages are involved in a wide range of biological processes and parasitic diseases. The characterization of the molecular mechanisms governing such processes usually requires precise control of the expression of genes of interest. We implemented a tetracycline-controlled gene expression system in the U937 cell line, one of the most used in vitro models for the research of human monocytes and macrophages. Here we characterized U937-derived cell lines in terms of phenotypic (morphology and marker expression) and functional (capacity for phagocytosis and for Leishmania parasite hosting) changes induced by phorbol-12-myristate-13-acetate (PMA). Finally, we provide evidence of tetracycline-inducible and reversible Lamin-A gene silencing of the PMA-differentiated U937-derived cells.

2014 ◽  
Vol 46 (3) ◽  
pp. 206-212 ◽  
Author(s):  
M. Goswami ◽  
B.S. Sharma ◽  
Kamalendra Yadav ◽  
S.N. Bahuguna ◽  
W.S. Lakra

2013 ◽  
Vol 31 (15_suppl) ◽  
pp. e22016-e22016
Author(s):  
Clara Patricia Rios Ibarra ◽  
Barbara Verduzco Garza ◽  
Rocio Ortiz Lopez ◽  
Yohann Grondin ◽  
Sonia Lozano Sepulveda ◽  
...  

e22016 Background: It has been demonstrated that ASA treatment could down-regulate in vitro HCV expression in hepatocarcinoma cells (~50%, p 0.05). However, the signaling pathway induced during ASA antiviral effect has not been elucidated. We analyzed the transcriptional expression profile of Huh-7-HCV-subgenomic replicon cells in presence or absence of ASA in order to identify the signaling pathway and the molecular mechanisms involved in the antiviral effect induced by ASA on HCV expression. Methods: Huh-7-HCV-replicon cells (hepatocarcinoma) were exposed to 4 mM ASA from 24 to 72 hours. Total RNA was isolated, quantified and validated by capillary electrophoresis. After that, we performed a retrotranscription in vitro. Synthesized transcripts were marked with biotin, purified, fragmentized and hybridized in HG-U133 Plus 2 Gene Expression. Hybridization signals were captured with Gen Chip 3000 7G Scanner and analyzed by Expression Console and Dchit Software. Results: After normalization, we obtained hierarchical maps with differentially-expressed genes. Among genetic targets over-expressed, the following stood out CCAAT-enhancer-binding proteins (C/EBP), interleukine-8 (IL-8), cytochrome P450 (CyP450) and methallothioneins (MT) genes were found. Among down-regulated genes we identified ribonucleotide reductase (RR) and superoxide dismutase (SOD) genes. Some of these genes have been previously associated with oxidative stress regulation. All results were validated by real time PCR. Conclusions: We observed that ASA modulates the expression of genes associated with antioxidant role as SOD and methallothioneins. Antioxidant agents can inhibit virus proliferation. HCV decreased antioxidant defense, which promotes the development of hepatic complications caused by HCV infection, including liver cancer. Therefore, ASA could be inducing an antioxidant environment regulating HCV replication. This study provides a tool for identifying novel host factors in hepatocarcinoma cells involved in the antiviral effect regulated by ASA against HCV and improves our understanding of the regulatory mechanism of HCV replication.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3624-3624
Author(s):  
Chiara Palmi ◽  
Grazia Fazio ◽  
Ilaria Brunati ◽  
Valeria Cazzaniga ◽  
Valentina André ◽  
...  

Abstract Abstract 3624 Introduction: The t(12;21) chromosome translocation generating TEL-AML1 chimeric fusion gene is a frequent initiating event in childhood leukaemia. Its impact is to generate a clone of covert, clinically silent pre-leukemic B cell progenitors. The leukemia arises only following second, post-natal hit/genetic events occurring years later. Moreover, relapse of leukemia is frequently arising from the pre-leukemic clone. Aim of our study is to investigate how TEL-AML1 expression can sustain this covert condition for many years. In a recent paper we described that the fusion gene rendered the B precursors resistant to the inhibitory activity of TGFbeta. Here we want to inquire into other factors that can explain the positive selection of the pre-leukemic clones over the normal counterpart. In particular, given the importance of the interaction with the microenvironment for survival signals for normal and leukemic stem cells, we question if the fusion gene causes changes in cellular adhesive and migratory properties. Methods: the study was performed by using two different models: i) a TEL-AML1 inducible expression system on the murine pro-B Ba/F3 cell line and ii) murine primary B lymphocytes (pre-BI cells) isolated from fetal liver, stably transduced with the pMIGR1-TEL-AML1-IRES-GFP construct. Gene expression assays were performed by using TaqMan (Applied Biosystems) and PCR Array technologies (SABioscences). Results: The expression of TEL-AML1 in Ba/F3 cell line causes over-expression of genes regulators of the cytoskeleton, specifically involved in cellular movement and in the regulation of actin dynamics. This gene expression alteration results in changes in the cellular morphology and phenotype: the cells acquire long extensions and several molecules involved in cell adhesion and migration are disregulated. Moreover, the TEL-AML1 positive cells present an increased ability to adhere to the ICAM1 substrate, but they also show a significant defect in the chemotactic response to CXCL12 in transwell migration assays in vitro, although the expression and the recycling of CXCR4 receptor are unaffected. This inability is not due to defects to migrate in general, as spontaneous motility is enhanced, but it is associated with a defect in CXCR4 signaling. In particular, CXCL12 calcium flux and ERK phosphorylation were inhibited. Those results have been confirmed in murine PreBI primary cells. Conclusions: in our murine models, TEL-AML1 affects the cytoscheleton regulation and causes alteration in cellular adhesive and migratory properties. We are now investigating how these alterations can give advantages to the pre-leukemic cells in the pathogenesis of TEL-AML1–expressing leukemia. Disclosures: No relevant conflicts of interest to declare.


2016 ◽  
Vol 27 (3) ◽  
pp. 166-173 ◽  
Author(s):  
Amit Kumar ◽  
Neha Singh ◽  
Mukunda Goswami ◽  
J. K. Srivastava ◽  
Akhilesh K. Mishra ◽  
...  

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2098-2098
Author(s):  
Maria Rosaria Esposito ◽  
Roberta Russo ◽  
Annaelena Troiano ◽  
Immacolata Andolfo ◽  
Roberta Asci ◽  
...  

Abstract Abstract 2098 Congenital dyserythropoietic anemias (CDAs) designate a group of genetic disorders in which ineffective erythropoiesis is the predominant mechanism of anemia marked by distinct morphologic abnormalities of the majority of erythroblasts in the bone marrow. CDA type II (CDAII) is the most common type of CDA. It is characterized by a recessive model of inheritance, mild to moderate anemia, jaundice, and splenomegaly (Fukuda MN, Glycobiology 1990; Fukuda MN, Clin Haematol 1993), by the presence of bi- and multinucleated erythroblasts in bone marrow, with nuclei of equal size and DNA content, suggesting a cytokinesis disturbance (Schwarz K and Iolascon A. et al., Nat Genet. 2009). The specific hallmark of diagnosis is the presence of the more abundant protein of membrane red cell, band 3, in a hypoglycosilated state; this is thinner and migrated slightly faster than in controls on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) (Anselstetter V et al., Br J Haematol 1977). The causative gene of CDAII, SEC23B, is a member of the SEC23 subfamily of the SEC23/SEC24 family, which is involved in vesicle trafficking. The encoded protein has similarity to yeast Sec23p (66.4%) component of COPII, the coat protein complex responsible for vesicle budding from the ER. The function of this gene product has been implicated in cargo selection and concentration. The SEC23B gene spans approximately 54 kb on human chromosome 20p11.23 and codifies for a protein of 767 aminoacids divided in five functional domains: zink finger, trunk, β-sheet, helical and gelsolin domain. Although most of the SEC23B mutations are sporadic events, 4 mutations (R14W, E109K, R497C, I318T) accounted for more than 50% of mutated alleles. The aim of this study is the in vitro characterization of the R14W mutation, the most frequent variant in Italy, particularly in South of Italy (Russo R et al., Am J Hematol. in press). We used the human erythroleukemia cell line, HEL, as in vitro model because it is more similar to mature red cell. By using in silico tool ESyPred3D Web Server 1.0, we predicted that this aminoacidic substitution alters the zink finger domain 3D structure, when compared to wild type protein. This tool implements homology modeling approach followed by a final analysis with MODELLER release 4 in order to build a 3D model of the submitted protein (Lambert et al, 2002). However, when we transfected the SEC23B-R14W we observed a strong reduction of gene expression in the mutant when compared to SEC23B-wt construct by qRT-PCR. These results have been also confirmed at the protein level. In fact the protein expression of SEC23B-R14W showed a reduction comparable to gene expression respect to SEC23B-wt construct. Immunofluorescence analyses by confocal microscopy, were used for the investigation of the cellular localization of SEC23B-R1W protein and, interestingly, the localization of mutant protein was not changed when compared to that wt. Our data allow us to hypothesize that the mutation R14W gives rise to anomalous protein product quantity, but the protein function would be like not altered. Our findings demonstrated that the most frequent mutation found in Italy, SEC23B-R14W, results in a reduced half-life of the mutated mRNA, without altering the cellular localization in HEL cell line. SEC23B belongs to a multiproteic compelx that assembles with the others complex proteins in accordance with a specific structure. Each structure establishes a cargo selectivity. Further studies are necessary in order to understand what is the role of SEC23B in selectivity of the cargo in erythroid cells and how its disruption could determines the appearance of the principal pathological phenotype in CDAII patients, for example the hypoglycosilation of band 3. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 22 (23) ◽  
pp. 13135
Author(s):  
Viktoriia A. Arzumanian ◽  
Olga I. Kiseleva ◽  
Ekaterina V. Poverennaya

Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.


2001 ◽  
Vol 69 (6) ◽  
pp. 4109-4115 ◽  
Author(s):  
Michael L. Paustian ◽  
Barbara J. May ◽  
Vivek Kapur

ABSTRACT Pasteurella multocida is the causative agent of a wide range of diseases in avian and mammalian hosts. Gene expression in response to low iron conditions was analyzed in P. multocida using whole-genome microarrays. The analysis shows that the expression of genes involved in energy metabolism and electron transport generally decreased 2.1- to 6-fold while that of genes used for iron binding and transport increased 2.1- to 7.7-fold in P. multocida during the first 2 h of growth under iron-limiting conditions compared with controls. Notably, 27% of the genes with significantly altered expression had no known function, illustrating the limitations of using publicly available databases to identify genes involved in microbial metabolism and pathogenesis. Taken together, the results of our investigations demonstrate the utility of whole-genome microarray analyses for the identification of genes with altered expression profiles during varying growth conditions and provide a framework for the detailed analysis of the molecular mechanisms of iron acquisition and metabolism in P. multocida and other gram-negative bacteria.


2007 ◽  
Vol 75 (9) ◽  
pp. 4597-4607 ◽  
Author(s):  
Tarun Bansal ◽  
Derek Englert ◽  
Jintae Lee ◽  
Manjunath Hegde ◽  
Thomas K. Wood ◽  
...  

ABSTRACT During infection in the gastrointestinal tract, enterohemorrhagic Escherichia coli (EHEC) O157:H7 is exposed to a wide range of signaling molecules, including the eukaryotic hormones epinephrine and norepinephrine, and bacterial signal molecules such as indole. Since these signaling molecules have been shown to be involved in the regulation of phenotypes such as motility and virulence that are crucial for EHEC infections, we hypothesized that these molecules also govern the initial recognition of the large intestine environment and attachment to the host cell surface. Here, we report that, compared to indole, epinephrine and norepinephrine exert divergent effects on EHEC chemotaxis, motility, biofilm formation, gene expression, and colonization of HeLa cells. Using a novel two-fluorophore chemotaxis assay, it was found that EHEC is attracted to epinephrine and norepinephrine while it is repelled by indole. In addition, epinephrine and norepinephrine also increased EHEC motility and biofilm formation while indole attenuated these phenotypes. DNA microarray analysis of surface-associated EHEC indicated that epinephrine/norepinephrine up-regulated the expression of genes involved in surface colonization and virulence while exposure to indole decreased their expression. The gene expression data also suggested that autoinducer 2 uptake was repressed upon exposure to epinephrine/norepinephrine but not indole. In vitro adherence experiments confirmed that epinephrine and norepinephrine increased attachment to epithelial cells while indole decreased adherence. Taken together, these results suggest that epinephrine and norepinephrine increase EHEC infection while indole attenuates the process.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3340
Author(s):  
Lena Maltan ◽  
Hadil Najjar ◽  
Adéla Tiffner ◽  
Isabella Derler

Calcium ion channels are involved in numerous biological functions such as lymphocyte activation, muscle contraction, neurotransmission, excitation, hormone secretion, gene expression, cell migration, memory, and aging. Therefore, their dysfunction can lead to a wide range of cellular abnormalities and, subsequently, to diseases. To date various conventional techniques have provided valuable insights into the roles of Ca2+ signaling. However, their limited spatiotemporal resolution and lack of reversibility pose significant obstacles in the detailed understanding of the structure–function relationship of ion channels. These drawbacks could be partially overcome by the use of optogenetics, which allows for the remote and well-defined manipulation of Ca²⁺-signaling. Here, we review the various optogenetic tools that have been used to achieve precise control over different Ca2+-permeable ion channels and receptors and associated downstream signaling cascades. We highlight the achievements of optogenetics as well as the still-open questions regarding the resolution of ion channel working mechanisms. In addition, we summarize the successes of optogenetics in manipulating many Ca2+-dependent biological processes both in vitro and in vivo. In summary, optogenetics has significantly advanced our understanding of Ca2+ signaling proteins and the used tools provide an essential basis for potential future therapeutic application.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 524
Author(s):  
Bingqi Wu ◽  
Zhiting Chen ◽  
Xiaohui Xu ◽  
Ronghua Chen ◽  
Siwei Wang ◽  
...  

Functional characterization of plant agrichemical transporters provided an opportunity to discover molecules that have a high mobility in plants and have the potential to increase the amount of pesticides reaching damage sites. Agrobacterium-mediated transient expression in tobacco is simple and fast, and its protein expression efficiency is high; this system is generally used to mediate heterologous gene expression. In this article, transient expression of tobacco nicotine uptake permease (NtNUP1) and rice polyamine uptake transporter 1 (OsPUT1) in Nicotiana benthamiana was performed to investigate whether this system is useful as a platform for studying the interactions between plant transporters and pesticides. The results showed that NtNUP1 increases nicotine uptake in N. benthamiana foliar discs and protoplasts, indicating that this transient gene expression system is feasible for studying gene function. Moreover, yeast expression of OsPUT1 apparently increases methomyl uptake. Overall, this method of constructing a transient gene expression system is useful for improving the efficiency of analyzing the functions of plant heterologous transporter-encoding genes and revealed that this system can be further used to study the functions of transporters and pesticides, especially their interactions.


Sign in / Sign up

Export Citation Format

Share Document