Prior immunity to Trichinella spiralis prevents (re)occurrence of an explicit stress response in intestines but not in mesenteric lymph nodes, heart and lungs from reinfected rats

Parasitology ◽  
2000 ◽  
Vol 121 (5) ◽  
pp. 565-573 ◽  
Author(s):  
J. PÉREZ-SERRANO ◽  
J. MARTÍNEZ ◽  
P. REGAL ◽  
W. E. BERNADINA ◽  
F. RODRÍGUEZ-CAABEIRO

We recently showed that, in our Trichinella spiralis rat model, first exposure, but not re-exposure to infective-stage larvae evoked heat shock responses in 4 test organs. Our work, however, failed to implicate either early complete clearance of challenge muscle larvae (ML), or rapid elimination of newborn larvae (NBL) in the phenomenon noted in reinfected rats. This study clarifies that issue using 2 established facts in T. spiralis biology and anti-T. spiralis immunology. That is, adult worms injure gut cells and immune destruction of NBL requires release of material also toxic to host cells. To approach the above problem we analysed relevant and irrelevant rat organs for increased heat shock protein (HSP) production at 1, 7, 14, 20 and 27 p.i. during first and second infections. Organs examined were intestines, mesenteric lymph nodes (MLN), heart and lungs. Using densitometric analyses of immunoblots, increased HSP expression was detected on day 7 in intestines from both primary and secondary-infected rats albeit that the change in the latter was just short of significant. Interestingly, MLN only exhibited increased HSP levels in the reinfected rat model with increased HSP levels persisting for 1 week. A lasting shock response was detected in reinfected rats; in contrast, first exposure resulted in shock responses being evident in lungs at either day 7 or day 14, only. These findings suggest that (i) in immune rats, a few challenge ML develop into adults, produce NBLwhich are trapped within MLN, and (ii) that anti-T. spiralis and/or anti-NBL immunity is associated with an, as yet, uncomprehended stress to host's heart tissues.

2001 ◽  
Vol 69 (5) ◽  
pp. 2779-2787 ◽  
Author(s):  
Joan Mecsas ◽  
Inna Bilis ◽  
Stanley Falkow

ABSTRACT Yersinia pseudotuberculosis localizes to the distal ileum, cecum, and proximal colon of the gastrointestinal tract after oral infection. Using signature-tagged mutagenesis, we isolated 13Y. pseudotuberculosis mutants that failed to survive in the cecum of mice after orogastric inoculation. Twelve of these mutants were also attenuated for replication in the spleen after intraperitoneal infection, whereas one strain, mutated the gene encoding invasin, replicated as well as wild-type bacteria in the spleen. Several mutations were in operons encoding components of the type III secretion system, including components involved in translocating Yop proteins into host cells. This indicates that one or more Yops may be necessary for survival in the gastrointestinal tract. Three mutants were defective in O-antigen biosynthesis; these mutants were also unable to invade epithelial cells as efficiently as wild-typeY. pseudotuberculosis. Several other mutations were in genes that had not previously been associated with growth in a host, including cls, ksgA, and sufl. In addition, using Y. pseudotuberculosis strains marked with signature tags, we counted the number of different bacterial clones that were present in the cecum, mesenteric lymph nodes, and spleen 5 days postinfection. We find barriers in the host animal that limit the number of bacteria that succeed in reaching and/or replicating in the mesenteric lymph nodes and spleen after breaching the gut mucosa.


BMC Surgery ◽  
2019 ◽  
Vol 18 (S1) ◽  
Author(s):  
Massimiliano Veroux ◽  
Rita Bottino ◽  
Roberta Santini ◽  
Suzanne Bertera ◽  
Daniela Corona ◽  
...  

2018 ◽  
Vol 202 (1) ◽  
pp. 260-267 ◽  
Author(s):  
Alberto Bravo-Blas ◽  
Lotta Utriainen ◽  
Slater L. Clay ◽  
Verena Kästele ◽  
Vuk Cerovic ◽  
...  

2022 ◽  
Vol 21 (1) ◽  
pp. 72-84
Author(s):  
Yass, A.W. ◽  
Habasha, F.G. F.G. ◽  
Al-Sammarai, S.

A systemic study was done on the pathogenesis of experimentally induced Salmonella typhimurium infection in calves. The present investigation was carried out on sixteen normal colostrum fed friesian calves, ranging in age from 3 to 6 weeks. The calves were divided into two equal groups. Group I inoculated orally with (1.5 x 10'') Salmonella typhimurium and group IA served as control.  • The early ultrastructural alteration in the mesenteric lymph nodes was the presence of many free Salmonella in localized vacuoles. The interaction between the host cells and phagocytized Salmonella was also observed.


2001 ◽  
Vol 120 (5) ◽  
pp. A183-A183
Author(s):  
H KOBAYASHI ◽  
H NAGATA ◽  
S MIURA ◽  
T AZUMA ◽  
H SUZUKI ◽  
...  

Author(s):  
Carolin Wiechers ◽  
Mangge Zou ◽  
Eric Galvez ◽  
Michael Beckstette ◽  
Maria Ebel ◽  
...  

AbstractIntestinal Foxp3+ regulatory T cell (Treg) subsets are crucial players in tolerance to microbiota-derived and food-borne antigens, and compelling evidence suggests that the intestinal microbiota modulates their generation, functional specialization, and maintenance. Selected bacterial species and microbiota-derived metabolites, such as short-chain fatty acids (SCFAs), have been reported to promote Treg homeostasis in the intestinal lamina propria. Furthermore, gut-draining mesenteric lymph nodes (mLNs) are particularly efficient sites for the generation of peripherally induced Tregs (pTregs). Despite this knowledge, the direct role of the microbiota and their metabolites in the early stages of pTreg induction within mLNs is not fully elucidated. Here, using an adoptive transfer-based pTreg induction system, we demonstrate that neither transfer of a dysbiotic microbiota nor dietary SCFA supplementation modulated the pTreg induction capacity of mLNs. Even mice housed under germ-free (GF) conditions displayed equivalent pTreg induction within mLNs. Further molecular characterization of these de novo induced pTregs from mLNs by dissection of their transcriptomes and accessible chromatin regions revealed that the microbiota indeed has a limited impact and does not contribute to the initialization of the Treg-specific epigenetic landscape. Overall, our data suggest that the microbiota is dispensable for the early stages of pTreg induction within mLNs.


Sign in / Sign up

Export Citation Format

Share Document