Modification of specular reflexion and light transmission by biological surface structures

1968 ◽  
Vol 1 (1) ◽  
pp. 89-105 ◽  
Author(s):  
C. G. Bernhard ◽  
G. Gemne ◽  
A. R. Møller

Biophysicists, who, by definition, apply physical and mathematical principles to their analysis of biological problems for the understanding of the functions of living organisms, are to a great extent concerned with basic characteristics more or less common to all organisms. As pointed out by Griffin (1958) in his book on acoustic orientation, it may well be that ‘this fruitful preoccupation with the universals of protoplasm tends to foster an unduly restricted view of its many intricate potentialities’. The knowledge of the many ways in which animals and plants are adapted for a ‘successful life’ has had a great impact upon the concepts of evolution and natural selection. As a contribution to the proper understanding of these concepts the study of the biophysical principles, by which various geometrically oriented tissues serve different functions, becomes of special interest.

1984 ◽  
Vol 1 ◽  
pp. 84-96 ◽  
Author(s):  
Thomas W. Broadhead ◽  
Johnny A. Waters

Critics of the concept of organic change through time have demanded proof not only of “transitional forms” but of specific transitions among higher taxonomic groups. Transitional forms among species and between a species of one genus and a species of another genus have been criticized because most demonstrated ancestor-descendant transitions are considered to occur within one “kind” of organism; the “kind” concept is bereft of biological meaning.Natural selection acts upon organisms at all stages of ontogeny, and especially at larval-juvenile stages. Large shifts in the morphology of one or more features are common in groups of organisms that evolve by heterochrony. Because heterochrony involves a change in timing of the appearance or development of a particular feature, recognition of heterochrony requires a confident knowledge of ontogeny. The resulting increase in complexity (e.g. recapitulation) or decrease in complexity (e.g. paedomorphosis), well documented among living organisms, commonly excludes morphologic intermediates. Paedomorphosis is especially important in the evolution of progressively simplifying lineages and has been well documented from living plants and animals and fossil representatives of echinoderms (blastoids, crinoids), conodonts, arthropods, mollusks and vertebrates. Heterochrony characterizes the evolution of most metazoan organisms, occurs at all taxonomic levels and was probably responsible for major innovations by which higher taxonomic groups are recognized.


2015 ◽  
Vol 12 (104) ◽  
pp. 20141226 ◽  
Author(s):  
Chiara Marletto

Neo-Darwinian evolutionary theory explains how the appearance of purposive design in the adaptations of living organisms can have come about without their intentionally being designed. The explanation relies crucially on the possibility of certain physical processes : mainly, gene replication and natural selection . In this paper, I show that for those processes to be possible without the design of biological adaptations being encoded in the laws of physics, those laws must have certain other properties. The theory of what these properties are is not part of evolution theory proper, yet without it the neo-Darwinian theory does not fully achieve its purpose of explaining the appearance of design. To this end, I apply constructor theory's new mode of explanation to express exactly within physics the appearance of design, no-design laws, and the logic of self-reproduction and natural selection. I conclude that self-reproduction, replication and natural selection are possible under no-design laws, the only non-trivial condition being that they allow digital information to be physically instantiated. This has an exact characterization in the constructor theory of information. I also show that under no-design laws an accurate replicator requires the existence of a ‘vehicle’ constituting, together with the replicator, a self-reproducer.


2003 ◽  
Vol 4 (6) ◽  
pp. 663-666 ◽  
Author(s):  
Phillip Lord ◽  
Robert Stevens

The Annual Bio-Ontologies meeting (http://www.cs.man.ac.uk/˜stevens/meeting03/) has now been running for 6 consecutive years, as a special interest group (SIG) of the much larger ISMB conference. It met in Brisbane, Australia, this summer, the first time it was held outside North America or Europe. The bio-ontologies meeting is 1 day long and normally has around 100 attendees. This year there were many fewer, no doubt a result of the distance, global politics and SARS. The meeting consisted of a series of 30 min talks with no formal peer review or publication. Talks ranged in style from fairly formal and complete pieces of work, through works in progress, to the very informal and discursive. Each year's meeting has a theme and this year it was ‘ontologies, and text processing’. There is a tendency for those submitting talks to ignore the theme completely, but this year's theme obviously struck a chord, as half the programme was about ontologies and text analysis (http://www.cs.man.ac.uk/˜stevensr/meeting03/programme.html). Despite the smaller size of the meeting, the programme was particularly strong this year, meaning that the tension between allowing time for the many excellent talks, discussion and questions from the floor was particular keenly felt. A happy problem to have!


Author(s):  
Earl B. Alexander ◽  
Roger G. Coleman ◽  
Todd Keeler-Wolfe ◽  
Susan P. Harrison

We walk on soils frequently, but we seldom observe them. Soils are massive, even though they are porous. Soil 1m (40 inches) deep over an area of 1 hectare (2.5 acres) might weigh 10,000–15,000 metric tons. It is teeming with life. There are trillions, or quadrillions, of living organisms (mostly microorganisms), representing thousands of species, in each square meter of soil (Metting 1993). In fact, species diversity, or number of species, may be greater below ground than above ground. We seldom see these organisms because we seldom look below ground or dig into it. The many worms and insects one finds digging in a garden are a small fraction of the species in soils because the greatest diversity of soil-dwelling species exists among microscopic insects, mites, roundworms (or nematodes), and fungi. Even though individual organisms in soils are mostly very small or microscopic, the total mass of living organisms in a hectare of soil, excluding plant roots, may be 1–5 or 10 metric tons. More than one-half of that biomass is bacteria and fungi. Living microorganism biomass generally accounts for about 1%–5% of the organic carbon and about 2%–6% of the nitrogen in soils (Lavelle and Spain 2001). The upper limit of soil is the ground surface of the earth. The lower limit is bedrock for engineers, or the depth of root penetration for edaphologists. Unconsolidated material that engineers call soil can be called “regolith” (Merrill 1897, Jackson 1997) to distinguish it from the soil of pedologists and edaphologists. Regolith may consist of disintegrated bedrock, gravel, sand, clay, or other materials that have not been consolidated to form rock. Pedologists investigate the upper part of regolith, where changes are effected by exchanges of gases between soil and aboveground atmosphere and by biological activity. This soil of pedologists may coincide with that of edaphologists or include more regolith. In fact, the lower limit of soil that pedologists investigate is arbitrary, unless this limit is a contact with bedrock that is practically impenetrable with pick and shovel.


1900 ◽  
Vol 4 (16) ◽  
pp. 150-151
Author(s):  
L. W. Broadwell

Mr. Chairman and Gentlemen of the Aeronautical Society:—The flying machine—a working model of which I have now the honour to submit to your critical inspection— is the invention of M. Anton Weczera, a Hungarian architect, who has devoted many years to the study of a question which has such a special interest for your Honourable Society.I, too, have devoted considerable attention to this subject; but whilst studying the construction of the many flying machines that dispense with the use of an air–bag, I have invariably failed to find in any of them an adequate and reliable lifting capacity, which, in my opinion, is the most essential element in all of them, and without which there can be no practical success.


Author(s):  
William B. Knowles

The many large-scale aerospace simulation facilities now available offer considerable potential for the generation of data on human performance that can be used in systems engineering design efforts. To realize this potential requires an understanding of the methodological limitations imposed by the basic characteristics of human performance, the application of efficient organizational techniques, and the development of more efficient techniques of experiment planning, design, and execution.


Crustaceana ◽  
2014 ◽  
Vol 87 (7) ◽  
pp. 856-865 ◽  
Author(s):  
Mark E. Laidre ◽  
Rebecca Trinh

Gastropod shells represent an essential resource for hermit crabs (Decapoda, Anomura). In many cases, hermit crabs acquire used shells from conspecifics who previously occupied the shell. Terrestrial hermit crabs (Coenobita compressus H. Milne Edwards, 1836) strongly prefer used shells. Here we test whether marine hermit crabs (Pagurus samuelis (Stimpson, 1857)) also exhibit a preference for used shells by providing them with matched pairs of (1) a used shell (previously occupied by either the choosing crab itself or by a conspecific) versus (2) a brand new shell (freshly derived from a predated gastropod). Unlike terrestrial hermit crabs, marine hermit crabs showed no preference for used shells (either their original shell or a shell from a conspecific). We suggest the divergent shell preferences of marine and terrestrial hermit crabs relate to the contrasting natural selection pressures in the sea versus on land. In particular, the used shells of terrestrial hermit crabs are architecturally remodeled by prior occupants and these remodeled shells represent a superior resource on land. In contrast, marine hermit crabs never remodel shells, and for them a used shell may be less protective than a new shell against the many specialized shell predators in the ocean.


Not the least important factors affecting the utilization of gaseous fuels are the remarkable effects of small quantities of catalytic substances, the presence of which may initiate or entirely change the nature of a combustion process. A proper understanding of these factors is therefore of great importance in the control of processes which are fundamental to many parts of applied chemistry. Such processes, however, are also intrinsically interesting for the insight they give into the ultimate mechanism of chemical reaction, and as a result of their study in the light of the theory of chain reactions, many empirical facts relating to combustion processes which previously were obscure now acquire a new significance. Of all these reactions the combustion of hydrogen and carbon monoxide stand in a unique position, for these substances more than any others occur as intermediaries in the burning of gaseous fuels; it is therefore of special interest to realize that the presence of traces of hydrogen may have a profound effect on the combustion of carbon monoxide, not only in lowering the temperature of ignition, but also in influencing the rate of propagation of the flame. This becomes of particular importance when it is remembered that carbon monoxide as used industrially nearly always contains traces of hydrogen.


2016 ◽  
Vol 8 ◽  
pp. 391
Author(s):  
ALCIDES SAMPEDRO MARÍN

The origins of ethology as a discipline are explained and is a proof of the Darwinian theory of the action of natural selection leading to the adaptive strategies that allow survival of living organisms. The emergence of behavioral ecology stands out as an important tool for the conservation of biological diversity. Its premises are explained, as well as several examples of behavior that affect the effective size of populations and anthropogenic impacts on various behaviors.Finally, the use of behavioral ecology as an indicator of the state of ecosystems and species and to develop environmental education is exemplified.


Toxics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 257
Author(s):  
Joana P. Fernandes ◽  
C. Marisa R. Almeida ◽  
Maria A. Salgado ◽  
Maria F. Carvalho ◽  
Ana P. Mucha

Various contaminants of emerging concern (CECs) have been detected in different ecosystems, posing a threat to living organisms and the environment. Pharmaceuticals are among the many CECs that enter the environment through different pathways, with wastewater treatment plants being the main input of these pollutants. Several technologies for the removal of these pollutants have been developed through the years, but there is still a lack of sustainable technologies suitable for being applied in natural environments. In this regard, solutions based on natural biological processes are attractive for the recovery of contaminated environments. Bioremediation is one of these natural-based solutions and takes advantage of the capacity of microorganisms to degrade different organic pollutants. Degradation of pollutants by native microorganisms is already known to be an important detoxification mechanism that is involved in natural attenuation processes that occur in the environment. Thus, bioremediation technologies based on the selection of natural degrading bacteria seem to be a promising clean-up technology suitable for application in natural environments. In this review, an overview of the occurrence and fate of pharmaceuticals is carried out, in which bioremediation tools are explored for the removal of these pollutants from impacted environments.


Sign in / Sign up

Export Citation Format

Share Document