Purple Moonflower: Emergence, Growth, Reproduction

Weed Science ◽  
1977 ◽  
Vol 25 (2) ◽  
pp. 163-167 ◽  
Author(s):  
J.M. Chandler ◽  
R.L. Munson ◽  
C.E. Vaughan

Purple moonflower's (Ipomoea turbinata Lagasca y Segura) vegetative growth and seed maturation were characterized in noncompetitive field studies. Seedling emergence of 50% or greater of mature scarified seed occurred to a soil depth of 12 cm. At vegetative maturity a typical plant produced 11 primary, 50 secondary, 94 tertiary, and 7 quaternary runners having a total length of 185 m. The average number of leaves per plant was 1,120. Maximum seed size, seed wet weight, occurrence of first mottled seed, and first capacity to germinate occurred 20 days after anthesis in immature seed that were removed from the seed pod. Maximum germination occurred at 26 days after anthesis. Seed moisture content (dry weight basis) reached 8.5%, seed had formed an impermeable seed coat, and physiological maturity (defined as maximum dry weight) occurred 34 days after anthesis. The total number of purple moonflower seed produced per plant averaged 9350. The major mechanism of seed dormancy was impermeability of seed coats.

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Nader Soltani ◽  
Christy Shropshire ◽  
Peter H. Sikkema

Field studies were conducted in 2010 and 2011 at the Huron Research Station, Exeter, Ontario and from 2009 to 2011 at the University of Guelph Ridgetown Campus, Ridgetown, Ontario to evaluate the sensitivity of four market classes of dry bean to sulfentrazone applied preemergence at 105, 140, and 280 g ai/ha alone and in combination with imazethapyr at 37.5 g ai/ha. At 1 week after emergence (WAE), sulfentrazone alone or in combination with imazethapyr at all doses evaluated caused no significant visible injury in dry bean. At 2 WAE, sulfentrazone alone caused 1–11, 1–11, 1–5, and 3–19% visible injury, and sulfentrazone + imazethapyr caused 3–11, 2–10, 2–5, and 4–20% visible injury in black, cranberry, kidney, and white bean, respectively. At 4 WAE, sulfentrazone alone caused 1–7, 1–7, 0–4, and 1–16% visible injury and sulfentrazone + imazethapyr caused 1–8, 1–5, 1–3, and 2–14% visible injury in black, cranberry, kidney, and white bean, respectively. Sulfentrazone PRE caused slightly greater injury in black and white bean compared to cranberry and kidney bean. Generally, crop injury with sulfentrazone at rates up to 140 g ai/ha alone and in combination with imazethapyr at 37.5 g ai/ha was minimal with no adverse effect on plant height, shoot dry weight, seed moisture content, and yield. Based on these results, there is potential for preemergence application of sulfentrazone at rates up to 140 g ai/ha alone or in combination with imazethapyr at 37.5 g ai/ha in black, cranberry, kidney and white bean.


1995 ◽  
Vol 120 (4) ◽  
pp. 699-702 ◽  
Author(s):  
Noël Pallais

Freshly harvested, true potato (Solarium tuberosum L.) seeds (TPS) will germinate at 15 ± 5C, but because of dormancy they must be stored for ≈18 months before they will germinate at >25C. Effects of seed moisture content (SMC) and temperature in storage on germination and seedling emergence were periodically tested during 18 months for seeds harvested from three positions on the mother plant. Seeds were stored with 37.,5%, and 7% SMC (on a dry weight basis) at 5 and 45C; sublets were removed monthly (1 to 7 months) from 45C and stored at 5C. Seed dormancy and viability were best preserved in storage at low SMC and low temperature, Seeds stored at 45C and 3 % SMC progressively lost dormancy and, after 4 months of storage, germination was up to 88% after 4 days at 127C. This rate of germination decreased with further storage. Up to 100% emergence occurred in 9 days in seeds stored for 18 months at 45C and 3% SMC. Seeds stored at 45C and 5% SMC lost dormancy in 2 months and <50% emergence occurred after 18 months. Seeds stored at 45C and 7% SMC deteriorated and became nonviable within 6 months of storage. The position of seed development did not significantly affect seed size or weight. However, seeds produced from the bottom third of the plant (lot A) were the most vigorous after dormancy was released with sufficient storage. This suggests that efforts should be made to produce TPS in the primary branches of the mother plant.


2020 ◽  
Vol 13 (2) ◽  
pp. 83-92 ◽  
Author(s):  
A. Adam

SummaryEnhancement of the resistance level in plants by rhizobacteria has been proven in several pathosystems. This study investigated the ability of four rhizobacteria strains (Pseudomonas putida BTP1 and Bacillus subtilis Bs2500, Bs2504 and Bs2508) to promote the growth in three barley genotypes and protect them against Cochliobolus sativus. Our results demonstrated that all tested rhizobacteria strains had a protective effect on barley genotypes Arabi Abiad, Banteng and WI2291. However, P. putida BTP1 and B. subtilis Bs2508 strains were the most effective as they reduced disease incidence by 53 and 38% (mean effect), respectively. On the other hand, there were significant differences among the rhizobacteria-treated genotypes on plant growth parameters, such as wet weight, dry weight, plant height and number of leaves. Pseudomonas putida BTP1 strain was the most effective as it significantly increased plant growth by 15-32%. In addition, the susceptible genotypes Arabi Abiad and WI2291 were the most responsive to rhizobacteria. This means that these genotypes have a high potential for increase of their resistance against the pathogen and enhancement of plant growth after the application of rhizobacteria. Consequently, barley seed treatment with the tested rhizobacteria could be considered as an effective biocontrol method against C. sativus.


Author(s):  
K. D. Sommerville ◽  
G. Errington ◽  
Z-J. Newby ◽  
G. S. Liyanage ◽  
C. A. Offord

AbstractSeed banking of rainforest species is hindered by lack of knowledge as to which species are tolerant of desiccation and freezing. We assessed 313 Australian rainforest species for seed banking suitability by comparing the germination percentage of fresh seeds to seeds dried at 15% RH and seeds stored at −20 °C after drying. We then compared desiccation responses to environmental, habit, fruit and seed characteristics to identify the most useful predictors of desiccation sensitivity. Of 162 species with ≥ 50% initial germination, 22% were sensitive to desiccation, 64% were tolerant and 10% were partially tolerant; the responses of 4% were uncertain. Of 107 desiccation tolerant species tested for response to freezing, 24% were freezing sensitive or short-lived in storage at −20 °C. Median values for fresh seed moisture content (SMC), oven dry weight (DW) and the likelihood of desiccation sensitivity (PD-S) were significantly greater for desiccation sensitive than desiccation tolerant seeds. Ninety-four to 97% of seeds with SMC < 29%, DW < 20 mg or PD-S < 0.01 were desiccation tolerant. Ordinal logistic regression of desiccation response against environmental, habit, fruit and seed characteristics indicated that the likelihood of desiccation sensitivity was significantly increased by a tree habit, fleshy fruit, increasing fresh SMC and increasing PD-S. The responses observed in this study were combined with earlier studies to develop a simple decision key to aid prediction of desiccation responses in untested rainforest species.


1995 ◽  
Vol 22 (1) ◽  
pp. 22-26 ◽  
Author(s):  
J. F. Spears ◽  
G. A. Sullivan

Abstract Classification of peanuts (Arachis hypogaea L.) based on pod mesocarp color has become a popular means of estimating maturity of runner peanuts. This study was initiated to determine if the hull mesocarp color is related to seed maturity of virginia-type peanuts and to evaluate changes in quality as seed mature. Cultivars NC 7 and NC 9 peanuts were harvested by hand in 1990, 1991, and 1992. Pods were separated according to mesocarp color. Seed moisture content and dry weight within a maturity class varied with cultivar and production year. Germination of NC 7 seed grown in 1990 and 1992 increased as seed approached maturity. Immature NC 9 seed grown in 1991 and 1992 had substantially lower germination than seed from mature pods. There was no increase in germination during maturation of NC 7 seed harvested in 1991 or NC 9 from 1990. Seed leakage during imbibition, measured by electrical conductivity, decreased as seed matured. The lowest leakage levels occurred when seed had reached physiological maturity. Germination following accelerated aging (AA) increased as seed matured. Maximum AA germination of NC 7 occurred when seed had reached 77, 84, and 100% of their final dry weight in 1990, 1991, and 1992, respectively. NC 9 seed achieved maximum germination following AA after the seed amassed at least 90% of their final dry weight.


2007 ◽  
Vol 47 (6) ◽  
pp. 683 ◽  
Author(s):  
Pippa J. Michael ◽  
Kathryn J. Steadman ◽  
Julie A. Plummer

Seed development was examined in Malva parviflora. The first flower opened 51 days after germination; flowers were tagged on the day that they opened and monitored for 33 days. Seeds were collected at 12 stages during this period and used to determine moisture content, germination of fresh seeds and desiccation tolerance (seeds dried to 10% moisture content followed by germination testing). Seed moisture content decreased as seeds developed, whereas fresh (max. 296 mg) and dry weight (max. 212 mg) increased to peak at 12–15 and ~21 days after flowering (DAF), respectively. Therefore, physiological maturity occurred at 21 DAF, when seed moisture content was 16–21%. Seeds were capable of germinating early in development, reaching a maximum of 63% at 9 DAF, but germination declined as development continued, presumably due to the imposition of physiological dormancy. Physical dormancy developed at or after physiological maturity, once seed moisture content declined below 20%. Seeds were able to tolerate desiccation from 18 DAF; desiccation hastened development of physical dormancy and improved germination. These results provide important information regarding M. parviflora seed development, which will ultimately improve weed control techniques aimed at preventing seed set and further additions to the seed bank.


2021 ◽  
Vol 2 ◽  
pp. 234-239
Author(s):  
Nada Kholifah ◽  
Ardiana Kartika B ◽  
Teguh Pribadi

PGPR (Plant Growth Promoting Rhizobacteria) is a substance that helps plant growth with the help of rhizosphere microorganisms. PGPR propagation can be done with liquid media. This PGPR propagation needs to be done because this substance has many benefits for agricultural cultivation. The application of PGPR to the test plant, namely the pakcoy plant, proved that there was an effect of giving PGPR to the plant. Observations on the test plants were carried out by observing several observation variables such as plant height, root length, number of leaves, wet weight and dry weight. The results of these observations showed that the effect on the test plants was seen in the variables of root length, wet weight, and dry weight. Meanwhile, the variable plant height and number of leaves did not show a visible difference. 


Nabatia ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Andy Pradana ◽  
Al Machfudz WDP

This study aims to determine the application of potassium fertilizer and chicken manure to the growth and production of shallots (Allium ascalanicum L.). The study used a randomized block design with 2 factors repeated 3 times. Factor 1: Potassium Fertilizer 40,60,80 kg/ha. Factor 2: Chicken Manure 5,10,15 tons/ha. The results showed that the application of potassium fertilizer and chicken manure did not interact with either the growth phase or the production phase of the plant on all observation variables, while the potassium fertilizer treatment showed significantly different results only on the plant vegetative growth parameters, namely the number of leaves at the age of 7 days after planting, namely ( 8,111 strands), while the vegetative phase had no significant effect on the number of tubers per clump, wet weight of tubers per clump, wet weight of tubers per plot, dry weight of sun-dried tubers per clump, and dry weight of sun-dried tubers per plot. While the treatment of chicken manure had a significant effect on the vegetative growth phase of plants, namely the length of plants at 28 DAP (30.278 cm) and 35 DAP (32.704 cm), on the number of leaves at 7 DAP (8,000 strands). While the generative phase (60 DAP) significantly affected the number of tubers per clump, namely (5,889 grams), wet weight of tubers per clump (38,333 grams), wet weight of tubers per plot (319,000 grams), dry weight of sun-dried tubers per clump. namely (23.074 grams), and the dry weight of sun-dried tubers per plot (191.889 grams).


2003 ◽  
Vol 60 (3) ◽  
pp. 465-469 ◽  
Author(s):  
Angelica Brod Rodo ◽  
Julio Marcos Filho

International research on vegetable seed vigor is not at the same level attained for grain crops species. This study was conducted to identify reliable procedures for the accelerated aging and controlled deterioration tests to rank onion (Allium cepa L.) seed lots according to their physiological potential. Six seed lots of the cultivars Aurora and Petroline were evaluated in the laboratory for germination, first count, seedling vigor classification, traditional and saturated salt accelerated aging (41ºC / 48 and 72 h), controlled deterioration (24% of water / 45ºC / 24 h) and seedling emergence tests. Seed moisture content after the saturated salt accelerated aging test was lower and uniform, which is considered an important advantage in comparison to the traditional procedure. The saturated salt accelerated aging (41ºC / 48 and 72 h) and controlled deterioration (moisture content adjusted to 24% / 45ºC / 24 h) tests were the best procedures to assess the physiological potential of onion seeds, and are indicated for use in quality control programs.


2007 ◽  
Vol 21 (1) ◽  
pp. 230-234 ◽  
Author(s):  
Peter H. Sikkema ◽  
Christy Shropshire ◽  
Nader Soltani

Three field trials were conducted over a 2-yr period (2004 and 2005) at Exeter and Ridgetown, Ontario to evaluate the tolerance of eight market classes of dry beans to KIH-485 applied PRE at 210 and 420 g ai/ha. KIH-485 PRE caused as much as 67% visual injury in small-seeded and 44% visual injury in large-seeded dry beans. KIH-485 applied PRE at 420 g/ha reduced plant height up to 47% at Ridgetown and 8% at Exeter in 2004, and reduced height of brown and white bean by 15 and 19%, respectively, but had no effect on the height of the other beans in 2005. Shoot dry weight was not affected at Exeter in 2004 but was reduced by 46% at Ridgetown in 2004 and 14% at Exeter in 2005. In 2004, seed moisture content increased by 5, 6, and 12% in black, otebo, and pinto beans, respectively. Seed yield was reduced up to 27% at Ridgetown and 11% at Exeter in 2004 but was not affected at Exeter in 2005. On the basis of this research, KIH-485 PRE causes unacceptable injury in some dry bean market classes.


Sign in / Sign up

Export Citation Format

Share Document