Effect of Soil Water Stress and Soil Temperature on Translocation of Diuron

Weed Science ◽  
1969 ◽  
Vol 17 (3) ◽  
pp. 304-306 ◽  
Author(s):  
R. H. Sedgley ◽  
L. Boersma

Rates of photosynthesis, respiration, and transpiration of wheat (Triticum aestivum L., var. Gaines) were determined as functions of time, under controlled conditions of moderate soil water stress and soil temperature, after treatment of the roots with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron). Air temperature, relative humidity, light intensity, and air movement were maintained constant. The rate of photosynthesis declined with time for all plants treated with diuron but not for the controls. No change in the rate of respiration was detected. The rate of transpiration decreased slightly immediately upon application of the diuron and then remained constant. The data indicate that soil temperature and soil water stress play important roles in the herbicidal action of diuron applied to the soil.

HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 778C-778
Author(s):  
Kun Xu* ◽  
Xiufeng Wang ◽  
Fang Wang

Mulching with straw increase soil water content, air relative humidity and air temperature, but decreased soil temperature. Though mulching with straw didn't change light intensity, ginger growth and yield were the same as shading. The growth and yield under shading and mulching with straw were both higher than that of naked soil.


1967 ◽  
Vol 42 (4) ◽  
pp. 550-556 ◽  
Author(s):  
L. M. Cox ◽  
L. Boersma

1996 ◽  
Vol 88 (4) ◽  
pp. 657-661 ◽  
Author(s):  
Theodore C. Helms ◽  
Edward Deckard ◽  
Robert J. Goos ◽  
John W. Enz

Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 563
Author(s):  
Esther Anokye ◽  
Samuel T. Lowor ◽  
Jerome A. Dogbatse ◽  
Francis K. Padi

With increasing frequency and intensity of dry spells in the cocoa production zones of West Africa, strategies for mitigating impact of water stress on cocoa seedling survival are urgently required. We investigated the effects of applied potassium on biomass accumulation, physiological processes and survival of cocoa varieties subjected to water stress in pot experiments in a gauzehouse facility. Four levels of potassium (0, 1, 2, or 3 g/plant as muriate of potash) were used. Soil water stress reduced plant biomass accumulation (shoot and roots), relative water content (RWC), chlorophyll content and fluorescence. Leaf phenol and proline contents were increased under water stress. Additionally, compared to the well-watered conditions, soils under water stress treatments had higher contents of exchangeable potassium and available phosphorus at the end of the experimental period. Potassium applied under well-watered conditions reduced leaf chlorophyll content and fluorescence and increased leaf electrolyte leakage, but improved the growth and integrity of physiological functions under soil water stress. Potassium addition increased biomass partitioning to roots, improved RWC and leaf membrane stability, and significantly improved cocoa seedling survival under water stress. Under water stress, the variety with the highest seedling mortality accumulated the highest contents of phenol and proline. A significant effect of variety on plant physiological functions was observed. Generally, varieties with PA 7 parentage had higher biomass partitioning to roots and better seedling survival under soil moisture stress. Proportion of biomass partitioned to roots, RWC, chlorophyll fluorescence and leaf electrolyte leakage appear to be the most reliable indicators of cocoa seedling tolerance to drought.


MAUSAM ◽  
2022 ◽  
Vol 73 (1) ◽  
pp. 161-172
Author(s):  
ANANTA VASHISTH ◽  
DEBASISH ROY ◽  
AVINASH GOYAL ◽  
P. KRISHNAN

Field experiments were conducted on the research farm of IARI, New Delhi during Rabi 2016-17 and 2017-18. Three varieties of wheat (PBW-723, HD-2967 and HD-3086) were sown on three different dates for generating different weather condition during various phenological stages of crop. Results showed that during early crop growth stages soil moisture had higher value and soil temperature had lower value and with progress of crop growth stage, the moisture in the upper layer decreased and soil temperature increased significantly as compared to the bottom layers. During tillering and jointing stage, air temperature within canopy was more and relative humidity was less while during flowering and grain filling stage, air temperature within canopy was less and relative humidity was more in timely sown crop as compared to late and very late sown crop. Radiation use efficiency and relative leaf water content had significantly higher value while leaf water potential had lower value in timely sown crop followed by late and very late sown crop. Yield had higher value in HD-3086 followed by HD-2967 and PBW-723 in all weather conditions. Canopy air temperature difference had positive value in very late sown crop particularly during flowering and grain-filling stages. This reflects in the yield. Yield was more in timely sown crop as compared to late and very late sown crop.  


2009 ◽  
Vol 1 (1) ◽  
pp. 1-7
Author(s):  
Ibrahim S. H. ◽  
Teo W.C. ◽  
Baharun A.

Swiftlet farming is a new industry in Sarawak as compared to other long-standing industries such as rubber, palm oil and timber. It is one of the businesses that involved a small capital investment that could generate enormous returns in the future. Swiftlet farming involves the conversion of human-centric building into structures for Swiftlet. The purpose of this conversion is to let Swiftlet for nesting and protect them. The design and construction of such building will also helps to accommodate Swiftlets' population. The nest of the Edible-nest Swiftlet rank amongst the world's most expensive animal products. Therefore, in order to increase the productivity of bird nest, study of the suitable habitat for Swiftlet should be done thoroughly. Environmental factors such as air temperature, surface temperature, relative humidity, air velocity and light intensity are the key factors for a successful Swiftlet farm house. Internal air temperature of building should be maintained from 26°C to 35°C, relative humidity from 80% to 90%, low air velocity and light intensity less than 5 LUX. Proper ventilation and installation of a humidifier could help the building to achieve the desirable range of environment factors. Location of structure will also be considered from direct sunlight direction to reduce the internal temperature. Only licensed Swiftlet farming is legal.


Sign in / Sign up

Export Citation Format

Share Document