Effect of Cotton (Gossypium hirsutum) Herbicide Carryover on Subsequent Crops

Weed Science ◽  
1986 ◽  
Vol 34 (5) ◽  
pp. 756-760 ◽  
Author(s):  
C. Brent Rogers ◽  
Ronald Talbert ◽  
Robert Frans

The residual effect of three cotton (Gossypium hirsutumL.) herbicide programs, including the use of no herbicides, a minimum program consisting of fluometuron {N,N-dimethyl-N′-[3-(trifluoromethyl)phenyl] urea} and MSMA (monosodium salt of methylarsonic acid), and an intensive program consisting of trifluralin [2,6-dinitro-N,N-dipropyl-4-(trifluoromethyl)benzenamine], fluometuron, MSMA, and linuron [N′-(3,4-dichlorophenyl)-N-methoxy-N-methylurea], were evaluated from 1976 to 1982. Herbicide injury to wheat (Triticum aestivumL.) and hairy vetch (Vicia villosaRoth.) on three soils showed carryover effects in the following sequence: Sharkey silty clay > Dundee silt loam > Loring silt loam. The intensive program was the most injurious on the Sharkey silty clay. The effects of the two herbicide programs were nearly equal on the Dundee and Loring silt loams. Possible replacement crops for cotton, such as grain sorghum [Sorghum bicolor(L.) Moench.] and corn (Zea maysL.) suffered the least damage from carryover; rice (Oryza sativaL.), soybeans [Glycine max(L.) Merr.] and cucumber (Cucumis sativisL.) suffered severe damage. Greenhouse bioassays generally confirmed field results, and fluometuron appeared to be the major component of carryover.

Weed Science ◽  
1982 ◽  
Vol 30 (1) ◽  
pp. 109-115 ◽  
Author(s):  
Tim Sharp ◽  
Robert Frans ◽  
Ronald Talbert

Soybeans [Glycine max(L.) Merr.] are often the replacement crop when cotton (Gossypium hirsutumL.) is abandoned because of stand failure in the southern United States. Injury from cotton herbicides may be reduced if the soybean planting is delayed more than 4 weeks after cotton planting or if the original herbicide-treated area is fully tilled and a new seedbed formed. Planting delay intervals were compared with five cotton preemergence herbicides on Calloway silt loam at one location. Seedbed-preparation methods were included in a similar experiment at two locations on Sharkey silty clay. Herbicides compared were fluometuron [1,1-dimethyl-3-(α,α,α-trifluoro-m-tolyl)urea], norflurazon [4-chloro-5-(methylamino)-2-(α,α,α-trifluoro-m-tolyl)-3(2H)-pyridazinone], cyanazine {2-[[4-chloro-6-(ethylamino)-s-triazin-2-yl] amino]-2-methylpropionitrile}, perfluidone {1,1,1-trifluoro-N-[2-methyl-4-phenylsulfonyl)phenyl] methanesulfonamide}, fluridone {1-methyl-3-phenyl-5-[3-(trifluoromethyl)phenyl]-4(1H)-pyridinone}, and diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea]. Seedbeds compared were no-till and conventional (fully tilled). Soybean planting delays after cotton planting were 20, 29, and 56 days (first year), and 15 and 29 or 15 and 30 days (second year). We found in the 2-yr studies that fluridone severely damaged soybeans both years. Fluometuron and diuron also caused damage the second year when we experienced wet, cool conditions in the spring. Most injury occurred on the clay, with yield reductions occurring even after the 30-day delay. Norflurazon was most injurious at this location. The no-tillage planting method resulted in the least herbicide injury on the silt loam and the conventional tillage method was better on the clay. Detailed studies with fluometuron under incubation conditions showed that degradation was inhibited most by low temperatures and high soil moisture.


Weed Science ◽  
1987 ◽  
Vol 35 (1) ◽  
pp. 75-80 ◽  
Author(s):  
Paul E. Keeley ◽  
Robert J. Thullen ◽  
Charles H. Carter

When postemergence applications of sethoxydim {2-[1-(ethoxyimino) butyl]-5-[2-(ethylthio)propyl]-3-hydroxy-2-cyclohexen-1-one} were compared with DSMA (disodium salt of methylarsonic acid), MSMA (monosodium salt of methylarsonic acid), and glyphosate [N-(phosphonomethyl)glycine] for control of johnsongrass [Sorghum halepense(L.) Pers. # SORHA] in cotton (Gossypium hirsutumL. ‘Acala SJ-2′), repeated annual applications of sethoxydim were more successful than other herbicides in protecting yields of cotton and reducing populations of rhizome johnsongrass over time. After the first year of treatment with sethoxydim in 1982, when an 18% yield loss of cotton occurred, populations of rhizome johnsongrass were reduced to the extent that they were no longer a threat to yields in plots treated with sethoxydim in 1983 and 1984. Although DSMA and glyphosate improved yields when compared to cultivated control plots, substantial yield losses occurred every year, and populations of johnsongrass remained unchanged after 3 yr of treatment. Averaged over 3 yr, plots treated with sethoxydim produced 94% as much cotton as weed-free plots, compared to 60 and 45% for plots treated with glyphosate and DSMA/MSMA, respectively.


Weed Science ◽  
1994 ◽  
Vol 42 (3) ◽  
pp. 438-445 ◽  
Author(s):  
Billy R. Corbin ◽  
Marilyn McClelland ◽  
Robert E. Frans ◽  
Ronald E. Talbert ◽  
Diana Horton

Existing long-term cotton experiments established in 1976 with minimum and intensive herbicide programs were subdivided in 1985 and 1986 to determine the longevity of fluometuron and trifluralin soil residues after discontinuing herbicide application. In monoculture cotton, seed cotton yield increased when herbicide use was discontinued in 1985 and 1986 after 9 and 10 yr of continuous use, respectively, on a Sharkey silty clay and a Dundee silt loam soil. Yield increases coincided with reductions of fluometuron and trifluralin soil residues. Fluometuron dissipated from the Dundee silt loam soil by 10 mo after the last application but was present in the Sharkey silty clay soil at 0.20 ppmw after 28 mo. Trifluralin did not totally dissipate from either soil, and low levels were present in the Dundee (0.05 ppmw) and Sharkey (0.13 ppmw) soils 30 mo after the last application. Visual injury to fall-seeded wheat and vetch decreased as herbicide residues dissipated. Fall tillage had no significant effect on the rate of fluometuron or trifluralin dissipation from either soil but reduced seed cotton yields.


Weed Science ◽  
1986 ◽  
Vol 34 (1) ◽  
pp. 122-130 ◽  
Author(s):  
C. Brent Rogers ◽  
Ronald E. Talbert ◽  
John D. Mattice ◽  
Terry L. Law ◽  
Robert E. Frans

Evidence has shown that fluometuron {N,N-dimethyl-N′-[3-(trifluoromethyl)phenyl]urea} persists beyond the end of the growing season when used in continuous cotton (Gossypium hirsutumL.) production. Samples were taken from three soils following cotton production in 1980, 1981, and 1982. All three soils had been in production under the same herbicide use regime, fluometuron preemergence followed by fluometuron plus MSMA (monosodium methanearsonate), since either 1976 or 1977. The fluometuron remaining in each soil was quantified using a greenhouse bioassay and a chemical extraction technique followed by high-performance liquid chromatography determinations. The fluometuron concentrations determined by bioassay and chemical extraction methods had partial correlation coefficients of 0.62, 0.91, and 0.72 for a Sharkey silty clay, a Dundee silt loam, and a Loring silt loam, respectively. Predictive equations were determined for each soil to relate chemical extraction findings to plant response. Bioassay analysis indicated nearly 2 ppmw of fluometuron in the Sharkey silty clay in October 1980, with 1 ppmw in the Dundee silt loam, and approximately 0.27 ppmw in the Loring silt loam with annual application rates of 4.0, 2.9, and 3.5 kg/ha, respectively. Fluometuron concentrations as determined by chemical analysis were 0.83, 0.34, and 0.14 ppmw, respectively. Fluometuron concentrations declined over the winter in all three soils. Samples taken in March of 1981, 1982, and 1983 showed little difference in carryover levels in the Sharkey silty clay but more yearly variation in the other two soils. Fluometuron was found in all three soils to depths of 60 cm, but more than 55% of the fluometuron was found in the upper 15 cm of each soil. A controlled laboratory study conducted with the three soils showed that both cold and dry conditions reduced fluometuron dissipation rates. In the laboratory under conditions favorable for dissipation, fluometuron had a half-life of 26 days in the Dundee silt loam, 43 days in the Loring silt loam, and 73 days in the Sharkey silty clay. In the field, dissipation was very rapid in the Loring silt loam compared to the Dundee silt loam and the Sharkey silty clay.


2004 ◽  
Vol 70 (11) ◽  
pp. 6420-6427 ◽  
Author(s):  
Steven C. Ingham ◽  
Jill A. Losinski ◽  
Matthew P. Andrews ◽  
Jane E. Breuer ◽  
Jeffry R. Breuer ◽  
...  

ABSTRACT In this study we tested the validity of the National Organic Program (NOP) requirement for a ≥120-day interval between application of noncomposted manure and harvesting of vegetables grown in manure-fertilized soil. Noncomposted bovine manure was applied to 9.3-m2 plots at three Wisconsin sites (loamy sand, silt loam, and silty clay loam) prior to spring and summer planting of carrots, radishes, and lettuce. Soil and washed (30 s under running tap water) vegetables were analyzed for indigenous Escherichia coli. Within 90 days, the level of E. coli in manure-fertilized soil generally decreased by about 3 log CFU/g from initial levels of 4.2 to 4.4 log CFU/g. Low levels of E. coli generally persisted in manure-fertilized soil for more than 100 days and were detected in enriched soil from all three sites 132 to 168 days after manure application. For carrots and lettuce, at least one enrichment-negative sample was obtained ≤100 days after manure application for 63 and 88% of the treatments, respectively. The current ≥120-day limit provided an even greater likelihood of not detecting E. coli on carrots (≥1 enrichment-negative result for 100% of the treatments). The rapid maturation of radishes prevented conclusive evaluation of a 100- or 120-day application-to-harvest interval. The absolute absence of E. coli from vegetables harvested from manure-fertilized Wisconsin soils may not be ensured solely by adherence to the NOP ≥120-day limit. Unless pathogens are far better at colonizing vegetables than indigenous E. coli strains are, it appears that the risk of contamination for vegetables grown in Wisconsin soils would be elevated only slightly by reducing the NOP requirement to ≥100 days.


Weed Science ◽  
2006 ◽  
Vol 54 (4) ◽  
pp. 800-806 ◽  
Author(s):  
David R. Shaw ◽  
Stephen M. Schraer ◽  
Joby M. Prince ◽  
Michele Boyette ◽  
William L. Kingery

The effects of time of precipitation and soil type on runoff losses of cyanazine and metolachlor were studied using a tilted-bed, microplot system. Two silt loam soils, Bosket and Dubbs, and a Sharkey silty clay were evaluated. Rainfall (22 mm h−1) was simulated at 0, 2, and 14 days after treatment (DAT). Time of precipitation did not impact herbicide losses or any of the runoff parameters evaluated in this study. Water runoff occurred sooner and in greater quantities from the surfaces of Bosket and Dubbs silt loam soils than from the surface of Sharkey silty clay. Runoff losses of cyanazine did not vary by soil type. Soil drying produced large cracks in Sharkey silty clay, which greatly reduced runoff in this soil. Combined runoff and leachate losses were highest from Dubbs silt loam. Runoff losses of metolachlor were not affected by soil type. However, regression analyses indicated that time of precipitation and soil type interacted to affect initial metolachlor concentration. At 14 DAT, initial metolachlor concentration was highest in runoff from Sharkey soil. Time of precipitation ranked with respect to initial metolachlor concentration in runoff from Bosket and Dubbs silt loam soils were 0 > 2 > 14 DAT and 0 = 2 > 14 DAT, respectively.


1980 ◽  
Vol 10 (4) ◽  
pp. 530-534 ◽  
Author(s):  
M.G. Dosskey ◽  
T. M. Ballard

Seedlings of Pseudotsugamenziesii (Mirb.) Franco were grown in fertilized silty clay, silt loam, and loamy sand in a growth chamber. Needle water potentials hardly changed as soil water potential, ψs, dropped to about −2.5 MPa. At ψs = −0.6 MPa, the effect of soil texture on water uptake rate was statistically significant (p = 0.01). Calculated water uptake resistance (from soil to foliage), R, was hardly affected by ψs between −0.5 and −1.0 MPa, but nearly doubled as ψs fell from −1.0 to −2.2 MPa. Plant water resistance is inferred to change relatively little over this range. Upper limits of soil resistance at ψs > −2.5 MPa, estimated (by Gardner's equation) for silt loam and silty clay, are too low to make a large contribution to R, or to the change in R with ψs, or to the large differences in average R among different textures at ψs values from −0.5 to −2.2 MPa. It is inferred that contact resistance, Rc, is large, varies significantly with ψs, and may vary with texture. Unsaturated hydraulic conductivity differences theoretically account for a relationship of Rc, with texture, and, together with possible root shrinkage, could account for a relationship of Rc, with ψs. Mycorrhizal development in these fertilized seedlings was too slight to justify consideration of hyphal resistance.


Author(s):  
Syed Azam Shah ◽  
Wisal Mohammad ◽  
Haroon Haroon ◽  
Adnan Anwar Khan

The study was designed to asses the residual effect of organic N (Poultry Manure) and mineral N on maize crop in field experiments carried out on silty clay loam soil at NIFA, Tarnab, Peshawar, Khyber Pakhtunkhwa (KP) Pakistan during 2014-15. Combined dose of N from both sources were 120 kg ha-1 applied to wheat crop alone and in different combination making six treatments. Maize variety (Azam) was sown in Randomized complete block (RCB) design with four replications. Agronomic data, grains ear-1, 1000 grain weight, biomass grain yield data, N-uptake in maize grain and straw were recorded. Results showed that maximum grain ear−1, 1000 grain weight, biomass and grain yield was obtained from treatment where 25% N applied from poultry manure + 75% from mineral N source applied to previous wheat crop. Agronomic efficiency and nitrogen use efficiency were also found maximum in treatment where 75% poultry manure + 25% mineral N was applied. It was concluded from the study that residual effect of organic manure with mineral N in different ratios enhances crop productivity and soil fertility.


Weed Science ◽  
1987 ◽  
Vol 35 (2) ◽  
pp. 237-242 ◽  
Author(s):  
Chester G. McWhorter ◽  
Gene D. Wills ◽  
Robert D. Wauchope

Foliar applications of14C-bentazon [3-(1-methylethyl)-(1H)-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide] with PPA (polymeric polyhydroxy acid) at 1 or 2% (v/v) or nonoxynol (9.5 POE) [α-(p-nonylpheny1)-ω-hydroxypoly(oxyethylene)] at 1% (v/v) or mixtures of PPA and nonoxynol did not increase absorption or translocation of14C-bentazon in soybeans [Glycine max(L.) Merr. ‘Lee 74′] or common cocklebur (Xanthium strumariumL. # XANST). PPA alone at 1 to 2% (v/v) did not significantly affect absorption or translocation of14C-bentazon in smooth pigweed (Amaranthus hybridusL. # AMACH), but PPA with nonoxynol significantly increased translocation out of the treated leaf. Both PPA and nonoxynol decreased absorption and movement of14C-MSMA [monosodium salt of methylarsonic acid] out of the treated leaf of johnsongrass [Sorghum halepense(L.) Pers. # SORHA]. In greenhouse research, PPA at 0.25 and 0.5% (v/v) did not increase the level of control of common cocklebur obtained following postemergence applications of bentazon at 0.24 and 0.48 kg ai/ha. Similarly, PPA at 0.25 and 0.50% (v/v) did not increase the toxicity of MSMA at 0.3 and 0.6 kg ai/ha to either johnsongrass or common cocklebur.


1993 ◽  
Vol 7 (3) ◽  
pp. 645-649 ◽  
Author(s):  
David L. Jordan ◽  
David H. Johnson ◽  
William G. Johnson ◽  
J. Andrew Kendig ◽  
Robert E. Frans ◽  
...  

Field experiments were conducted to determine carryover potential to grain sorghum and soybean of DPX-PE350 applied POST at 0.05, 0.1, and 0.2 kg ai ha−1to cotton the previous year. DPX-PE350 did not injure soybean or affect yield adversely. Grain sorghum was injured and maturity delayed on a Sharkey silty clay but not on a Calloway silt loam. Grain sorghum yield was reduced on both soils 16 and 22%, respectively, by residues from the 0.1 and 0.2 kg ha−1rates of DPX-PE350. In an incubation study, dissipation of DPX-PE350 was greater at 35 C than at 5 C., and did not differ between the two soils.


Sign in / Sign up

Export Citation Format

Share Document