Impact of Agronomic Practices on Weed Communities: Fallow Within Tillage Systems

Weed Science ◽  
1994 ◽  
Vol 42 (2) ◽  
pp. 184-194 ◽  
Author(s):  
Douglas A. Derksen ◽  
A. Gordon Thomas ◽  
Guy P. Lafond ◽  
Heather A. Loeppky ◽  
Clarence J. Swanton

Continuous-cropping conservation tillage systems may provide a viable alternative to the practice of summer fallow; however, concerns have been raised regarding potentially negative changes in weed communities in continuous cropping. Field experiments were established in Saskatchewan at three locations to determine the nature of weed community differences between a crop sequence with and without fallow in zero-, minimum-, and conventional-tillage systems from 1986 to 1990. Weed communities in continuous-cropping treatments tended to have greater total densities and were more similar in composition than crop-fallow treatments. Inclusion or exclusion of fallow within the rotation had a greater impact on weed community composition than did tillage system at Ituna and Waldron, but the reverse was true at Tadmore due to poor crop growth in all tillage systems. Differences in weed community composition were generally characterized by fluctuational changes in species associations. Volunteers of summer-annual crops, such as canola, flax, and barley, were associated with continuous cropping, but other species including perennial weeds, such as Canada thistle, perennial sowthistle, and quackgrass, were not strongly associated with the presence or absence of fallow. The practice of fallowing land to manage weeds may not be necessary.

Weed Science ◽  
1993 ◽  
Vol 41 (3) ◽  
pp. 409-417 ◽  
Author(s):  
Douglas A. Derksen ◽  
Guy P. Lafond ◽  
A. Gordon Thomas ◽  
Heather A. Loeppky ◽  
Clarence J. Swanton

Adverse changes in weed communities are a limiting factor for the adoption of conservation tillage practices. Predictions of an increased association of annual and perennial grasses, perennial dicot weeds, wind-disseminated species, and volunteer crops as weeds, and decreased association of annual dicot weeds in reduced-tillage systems were tested. Field experiments involving zero-, minimum-, and conventional-tillage systems were conducted in Saskatchewan from 1986 to 1990 at Ituna and Waldron, and from 1986 to 1988 at Tadmore. Weed community composition was analyzed for years 1988 to 1990 by canonical discriminant analysis. An increased association of perennial and annual grasses with zero tillage did not generally occur. Wind-dispersed species and volunteer crops were associated with reduced tillage and summer annual dicots with conventional tillage, but exceptions occurred. Species responded differently among sites or within a site over time. Within the time frame of this research, changes in weed communities were influenced more by location and year than by tillage systems, indicating fluctuational rather than directional or consistent changes in community composition.


Author(s):  
V. Dumych ◽  

The purpose of research: to improve the technology of growing flax in the Western region of Ukraine on the basis of the introduction of systems for minimizing tillage, which will increase the yield of trusts and seeds. Research methods: field, laboratory, visual and comparative calculation method. Research results: Field experiments included the study of three tillage systems (traditional, canning and mulching) and determining their impact on growth and development and yields of trusts and flax seeds. The traditional tillage system included the following operations: plowing with a reversible plow to a depth of 27 cm, cultivation with simultaneous harrowing and pre-sowing tillage. The conservation system is based on deep shelfless loosening of the soil and provided for chiseling to a depth of 40 cm, disking to a depth of 15 cm, cultivation with simultaneous harrowing, pre-sowing tillage. During the implementation of the mulching system, disking to a depth of 15 cm, cultivation with simultaneous harrowing and pre-sowing tillage with a combined unit was carried out. Tillage implements and machines were used to perform tillage operations: disc harrow BDVP-3,6, reversible plow PON-5/4, chisel PCh-3, cultivator KPSP-4, pre-sowing tillage unit LK-4. The SZ-3,6 ASTPA grain seeder was used for sowing long flax of the Kamenyar variety. Simultaneously with the sowing of flax seeds, local application of mineral fertilizers (nitroammophoska 2 c/ha) was carried out. The application of conservation tillage allows to obtain the yield of flax trust at the level of 3,5 t/ha, which is 0,4 t/ha (12.9 %) more than from the area of traditional tillage and 0,7 t/ha (25 %) in comparison with mulching. In the area with canning treatment, the seed yield was the highest and amounted to 0,64 t/ha. The difference between this option and traditional and mulching tillage reaches 0,06 t/ha (10,3 %) and 0.10 t/ha (18.5 %), respectively. Conclusions. Preservation tillage, which is based on shelf-free tillage to a depth of 40 cm and disking to a depth of 15 cm has a positive effect on plant growth and development, yield and quality of flax.


Weed Science ◽  
1999 ◽  
Vol 47 (1) ◽  
pp. 67-73 ◽  
Author(s):  
J. Dorado ◽  
J. P. Del Monte ◽  
C. López-Fando

In a semiarid Mediterranean site in central Spain, field experiments were conducted on a Calcic Haploxeralf (noncalcic brown soil), which had been managed with three crop rotations and two tillage systems (no-tillage and conventional tillage) since 1987. The crop rotations consisted of barley→vetch, barley→sunflower, and a barley monoculture. The study took place in two growing seasons (1992–1994) to assess the effects of management practices on the weed seedbank. During this period, spring weed control was not carried out in winter crops. In the no-tillage system, there was a significant increase in the number of seeds of different weed species: anacyclus, common purslane, corn poppy, knotted hedge-parsley, mouse-ear cress, spring whitlowgrass, tumble pigweed, venus-comb, andVeronica triphyllos.Conversely, the presence of prostrate knotweed and wild radish was highest in plots under conventional tillage. These results suggest large differences in the weed seedbank as a consequence of different soil conditions among tillage systems, but also the necessity of spring weed control when a no-tillage system is used. With regard to crop rotations, the number of seeds of knotted hedge-parsley, mouse-ear cress, and spring whitlowgrass was greater in the plots under the barley→vetch rotation. Common lambsquarters dominated in the plots under the barley→sunflower rotation, whereas venus-comb was the most frequent weed in the barley monoculture. Larger and more diverse weed populations developed in the barley→vetch rotation rather than in the barley→sunflower rotation or the barley monoculture.


Weed Science ◽  
1990 ◽  
Vol 38 (3) ◽  
pp. 243-248 ◽  
Author(s):  
John W. Wilcut ◽  
Glenn R. Wehtje ◽  
T. Vint Hicks

Field experiments were conducted from 1985 to 1987 to evaluate herbicide systems for minimum-tillage and conventional-tillage peanut production. While acceptable weed control could be achieved in both tillage systems, minimum-tillage systems generally had to be more herbicide intensive. Preemergence or preplant-incorporated within-the-row applications of either ethalfluralin or pendimethalin plus postemergence applications of paraquat and sethoxydim provided Texas panicum control equivalent to preplant-incorporated applications of ethalfluralin or pendimethalin. Early-postemergence paraquat applications improved Florida beggarweed and pitted morningglory control in conventional-tillage systems at least 15% compared to the same systems without paraquat Control of bristly starbur and sicklepod in conventional-tillage systems did not increase with paraquat application. Broadleaf weed control did not differ between tillage systems, except pitted morningglory control was lower in the minimum-tillage system. Conventional-tillage peanuts produced yields 800 to 1900 kg/ha higher, depending on herbicide system, and also provided greater net returns than minimum-tillage peanuts. The greater yield and net returns in conventional- versus minimum-tillage systems were not attributed to weed control or disease problems.


2015 ◽  
Vol 29 (3) ◽  
pp. 367-373 ◽  
Author(s):  
Drew J. Lyon ◽  
Frank L. Young

Spring barley can be used to diversify and intensify winter wheat-based production systems in the U.S. Pacific Northwest. The objective of this study was to describe the effects of tillage system and weed management level (WML) on weed control and spring barley grain yield when grown in a winter wheat-spring barley-spring dry pea rotation. A long-term integrated pest management field study examined the effects of three WMLs (minimum, moderate, and maximum) and two tillage systems (conservation and conventional) on weed control and barley grain yield. Total weed biomass at harvest was 8.0 and 59.7 g m−2for the maximum and minimum WMLs, respectively, in the conservation tillage system, but was similar and averaged 12.2 g m−2for all three WMLs in the conventional tillage system. Despite greater weed biomass with minimum weed management in the conservation tillage system, barley grain yields averaged 5,060 and 4,780 kg ha−1for the conservation tillage and conventional tillage systems, respectively. The benefits of conservation tillage require adequate herbicide inputs.


Author(s):  
Alina ŞIMON ◽  
Felicia CHEŢAN ◽  
Cornel CHEŢAN ◽  
Marius BĂRDAŞ

Plants of spontaneous flora are in constant competition with culture plants for water, nutrients and other vegetation factors. The degree of weeding was determined in 2014-2016, at four crops - winter wheat, maize, soybeans and peas, cultivated in conventional tillage system and conservation tillage. Temperatures and precipitations registered on the vegetation period in three year had a high influence on the number of weeds found in agricultural crops, so in 2015 there was a smaller number of weeds than in 2014 respectively 2016. Of the species determined in this period is noted for annual dicotyledonous (most of them Chenopodium sp., Veronica sp. and Xanthium strumarium), and among the species of monocotyledonous species Echinochloa sp. and Setaria sp. which are found in all four cultures. In the case of the application of conservative tillage systems there is an increase in the number of weeds compared to the conventional tillage system. The average yields obtained by maize, soybean and peas at application of conservative tillage systems are close to the classical tillage system, the winter wheat yield was higher in the no tillage system than in the classical tillage system.


2021 ◽  
Vol 13 (4) ◽  
pp. 2172
Author(s):  
Sunyad Sohail ◽  
Muhammad Ansar ◽  
Milan Skalicky ◽  
Allah Wasaya ◽  
Walid Soufan ◽  
...  

Livestock development in rainfed areas is slower due to the inadequate supply of nutritious fodder. Mono-cropping systems also have a negative impact on forage yield and nutrition as cereals are deficient in protein. Hence, there is a dire need to grow cereals with legumes to improve forage yield and quality. Therefore, a two-year field study was undertaken to evaluate winter cereal–legume forage and their mixtures viz. oats (cv. PD2-LV65), barley (Jau-86) and one legume viz. vetch (cv. Languedock) under different tillage systems viz. conventional tillage (moldboard plow+4-cultivation with tines) and conservation tillage (3-cultivation with tines). Crops were grown in pure stands as well as in mixtures with a 70:30 seeding ratio. The results revealed that the conventional tillage system performed better in terms of numbers of tillers/branches, leaf-to-stem ratio and green fodder yield than the conservation tillage system. However, the conventional and conservation tillage systems did not show a significant difference in terms of crude protein, acid detergent fiber and neutral detergent fiber. In the pure stands and cereal–legume mixtures, the oat–vetch mixture performed better in terms of plant height, leaf-to-stem ratio and green fodder yield. The maximum crude protein content was observed in the oat–vetch mixture, while the maximum acid detergent fiber and neutral detergent fiber were observed in the pure oat stands. In competitive indices, the land-equivalent ratio and competitive ratio showed the advantage of intercropping. In actual yield loss, results showed the positive value of barley and oats in mixtures, which reflects the advantage of intercropping in the rainfed areas. The economic analysis showed a greater net benefit from the conventional tillage than the conservation tillage system under rainfed conditions. On the basis of this investigation, an oat–vetch mixture and the conventional tillage system are recommended for higher tonnage of nutritious fodder in rainfed areas.


Author(s):  
M. Novokhatskyi ◽  
◽  
V. Targonya ◽  
T. Babinets ◽  
O. Gorodetskyi ◽  
...  

Aim. Assessment of the impact of the most common systems of basic tillage and biological methods of optimization of nutrition regimes on the realization of the potential of grain productivity of soybean in the Forest-Steppe of Ukraine. Methods. The research used general scientific (hypothesis, experiment, observation) and special (field experiment, morphological analysis) methods Results. The analysis of the results of field experiments shows that the conservation system of soil cultivation, which provided the formation of 27.6 c/ha of grain, is preferable by the level of biological yield of soybean. The use of other systems caused a decrease in the biological yield level: up to 26.4 c/ha for the use of the traditional system, up to 25.3 c/ha for the use of mulching and up to 23.0 c/ha for the use of the mini-till. With the use of Groundfix, the average biological yield of soybean grain increases to 25.6 c / ha for application rates of 5 l/ha, and to 28.2 c/ha for application rates of 10 l/ha when control variants (without the use of the specified preparation) an average of 22.6 c/ha of grain was formed with fluctuations in soil tillage systems from 21.0 (mini-bodies) to 25.8 c/ha (traditional).The application of Groundfix (10 l/ha) reduced the seed abortion rate from 11.0% (average without biofertilizer variants) to 8.0%, forming the optimal number of stem nodes with beans, increasing the attachment height of the lower beans and improving other indicators of biological productivity soybeans. Conclusions. It has been found that the use of the canning tillage system generates an average of 27.6 cent soybean grains, which is the highest indicator among the main tillage systems within the scheme of our research. The use of Groundfix caused a change in this indicator: if the variants with a conservative system of basic tillage without the use of biological preparation (control) were formed on average 24.1 c/ha, the use of Ground Licks caused the increase of biological productivity up to 29.4 c/ha, and at a dose of 10 l/ha biological yield was 32.2 c/ha. It was found that both the use of Groundfix and the basic tillage system influenced the elements of the yield structure: the density of the plants at the time of harvest depended more on the tillage system than on the use of Groundfix; the use of Groundfix and increasing its dose within the scheme of our studies positively reflected on the density of standing plants; the height of attachment of the lower beans and reduced the abortion of the seeds.


2010 ◽  
Vol 45 (12) ◽  
pp. 1331-1341 ◽  
Author(s):  
Homero Bergamaschi ◽  
Genei Antonio Dalmago ◽  
João Ito Bergonci ◽  
Cleusa Adriane Menegassi Bianchi Krüger ◽  
Bruna Maria Machado Heckler ◽  
...  

The objective of this work was to evaluate changes in the photosynthetic photon flux density (PPFD) interception efficiency and PPFD extinction coefficient for maize crop subjected to different soil tillage systems and water availability levels. Crops were subjected to no-tillage and conventional tillage systems combined with full irrigation and non-irrigation treatments. Continuous measurements of transmitted PPFD on the soil surface and incoming PPFD over the canopy were taken throughout the crop cycle. Leaf area index and soil water potential were also measured during the whole period. Considering a mean value over the maize cycle, intercepted PPFD was higher in the conventional tillage than in the no-tillage system. During the initial stages of plants, intercepted PPFD in the conventional tillage was double the PPFD interception in the no-tillage treatment. However, those differences were reduced up to the maximum leaf area index, close to tasseling stage. The lowest interception of PPFD occurred in the conventional tillage during the reproductive period, as leaf senescence progressed. Over the entire crop cycle, the interception of PPFD by the non-irrigated plants was about 20% lower than by the irrigated plants. The no-tillage system reduced the extinction coefficient for PPFD, which may have allowed a higher penetration of solar radiation into the canopy


1995 ◽  
Vol 22 (2) ◽  
pp. 120-124 ◽  
Author(s):  
F. S. Wright ◽  
D. M. Porter

Abstract The influence of conservational tillage and cultivar on pod yield, crop value, and market grade factors was evaluated as a means to increase the production efficiency of peanut (Arachis hypogaea L.). Two conservational tillage systems, in-row and band tillage, and one conventional tillage system were compared over a 4-yr period using the cultivars Florigiant, NC 6, and VA 81B. For all three cultivars, pod yields averaged 15% less and crop values averaged 21% less under the conservational tillage systems as compared to the conventional tillage system. The cultivar NC 6 performed slightly better than Florigiant and VA 81B. The percentage of extra large kernels for NC 6 was significantly higher than for the other two cultivars. There were no significant differences in the percentage of sound mature kernels and total meat content between the three cultivars. Tillage systems did not have a consistent effect on grade factors over the 4-yr period.


Sign in / Sign up

Export Citation Format

Share Document