scholarly journals Energy Transfer during the Tidal Encounter of Disc Galaxies

1983 ◽  
Vol 100 ◽  
pp. 355-356
Author(s):  
Philip L. Palmer

Numerical simulations of merging galaxies do not include a disc component due to bar instability modes. Analytic work is based upon the impulsive approximation which leads to energy loss by the perturber. However, for the perturber to become bound we need consider parabolic encounters. Here we present an analytic technique suitable for all types of encounters.

1998 ◽  
Vol 184 ◽  
pp. 265-266
Author(s):  
M. Noguchi

Starburst phenomena in interacting and merging galaxies have been one of the most widely investigated subjects in today's galactic astronomy. On the theoretical side, a large body of numerical studies have been performed in order to interpret available observational data. Numerical simulations have been advanced to the point where they can include interstellar medium (ISM) and star formation process.


2015 ◽  
Vol 47 (1) ◽  
pp. 434-445 ◽  
Author(s):  
Xiaobin Zhou ◽  
Mikael Ersson ◽  
Liangcai Zhong ◽  
Pär Jönsson

2018 ◽  
Vol 910 ◽  
pp. 78-83 ◽  
Author(s):  
Yuta Sugiyama ◽  
Tomotaka Homae ◽  
Kunihiko Wakabayashi ◽  
Tomoharu Matsumura ◽  
Yoshio Nakayama

This paper investigates explosions in a straight square tube in order to understand the mitigation effect of water on blast waves that emerge outside. Numerical simulations are used to assess the effect of water that is put inside the tube. The water reduces the peak overpressure outside, which agrees well with the experimental data. The increases in the kinetic and internal energies of the water are estimated, and the internal energy transfer at the air/water interface is shown to be an important factor in mitigating the blast wave in the present numerical method.


2015 ◽  
Vol 771 ◽  
pp. 57-78 ◽  
Author(s):  
Changwoo Kang ◽  
Kyung-Soo Yang ◽  
Innocent Mutabazi

We have performed numerical simulations of the flow in a large-aspect-ratio Couette–Taylor system with rotating inner cylinder and with a radial temperature gradient. The aspect ratio was chosen in such a way that the base state is in the conduction regime. Away from the endplates, the base flow is a superposition of an azimuthal flow induced by rotation and an axial flow (large convective cell) induced by the temperature gradient. For a fixed rotation rate of the inner cylinder in the subcritical laminar regime, the increase of the temperature difference imposed on the annulus destabilizes the convective cell to give rise to co-rotating vortices as primary instability modes and to counter-rotating vortices as secondary instability modes. The space–time properties of these vortices have been computed, together with the momentum and heat transfer coefficients. The temperature gradient enhances the momentum and heat transfer in the flow independently of its sign.


2003 ◽  
Vol 409 (2) ◽  
pp. 469-477 ◽  
Author(s):  
H. Wozniak ◽  
F. Combes ◽  
E. Emsellem ◽  
D. Friedli

2018 ◽  
Vol 75 (4) ◽  
pp. 1163-1171 ◽  
Author(s):  
Masih Eghdami ◽  
Shanti Bhushan ◽  
Ana P. Barros

Abstract Understanding the development of the atmospheric energy spectrum across scales is necessary to elucidate atmospheric predictability. In this manuscript, the authors investigate energy transfer between the synoptic scale and the mesoscale using direct numerical simulations (DNSs) of two-dimensional (2D) turbulence transfer under forcing applied at different scales. First, DNS results forced by a single kinetic energy source at large scales show that the energy spectra slopes of the direct enstrophy cascade are steeper than the theoretically predicted −3 slope. Second, the presence of two inertial ranges in 2D turbulence at intermediate scales is investigated by introducing a second energy source in the meso-α-scale range. The energy spectra for the DNS with two kinetic energy sources exhibit flatter slopes that are closer to −3, consistent with the observed kinetic energy spectra of horizontal winds in the atmosphere at synoptic scales. Further, the results are independent of model resolution and scale separation between the two energy sources, with a robust transition region between the lower synoptic and the upper meso-α scales in agreement with classical observations in the upper troposphere. These results suggest the existence of a mesoscale feedback on synoptic-scale predictability that emerges from the concurrence of the direct (downscale) enstrophy transfer in the synoptic scales and the inverse (upscale) kinetic energy transfer from the mesoscale to the synoptic scale in the troposphere.


Sign in / Sign up

Export Citation Format

Share Document