scholarly journals Energy Release in Stellar Flares

1990 ◽  
Vol 142 ◽  
pp. 77-92
Author(s):  
R. Pallavicini

Flare-like events similar to those observed on the Sun occur on many different types of stars, particularly on late K and M dwarfs. Although the physical mechanisms responsible for these events remain largely unknown, it is likely that the flare energy derives from dissipation of magnetic fields as is the case for solar flares. We review the basic observational facts that suggest an analogy between solar and stellar flares and we discuss how the different physical conditions occurring on stars may affect the application of current solar-type models to the stellar case. We show that, in spite of a qualitative agreement found between model predictions and observations, there is still no convincing evidence that stellar flares are simply scaled-up versions of solar flares. Major advances in the observations of stellar flares are required before this fundamental question can be safely addressed.

1989 ◽  
Vol 104 (1) ◽  
pp. 313-322
Author(s):  
Giannina Poletto

AbstractAccording to one of the most popular classifications, solar flares may be assigned either to the category of small short-lived events, or to the category of large, long-duration two-ribbon (2-R) flares. Even if such a broad division oversimplifies the flare phenomenon, our knowledge of the characteristics of stellar flares is so poor, that it is worthwhile to investigate the possibility of adopting this classification scheme for stellar flares as well. In particular we will analyze Einstein observations of a long duration flare on EQ Peg to establish whether it might be considered as a stellar analogy of 2-R solar events. To this end we apply to EQ Peg data a reconnection model, developed originally for solar 2-R flares, and conclude that stellar observations are consistent with model predictions, although additional information is required to identify uniquely the physical parameters of the flare region. Application of the model to integrated observations of a 2-R solar flare, for which high spatial resolution data are also available, shows, however, that future integrated observations may allow us to solve the ambiguities of the model and use it as a diagnostic tool for a better understanding of stellar flares.


2013 ◽  
Vol 9 (S301) ◽  
pp. 349-352 ◽  
Author(s):  
Alexander G. Kosovichev

AbstractIn addition to well-known mechanisms of excitation of solar and stellar oscillations by turbulent convection and instabilities, the oscillations can be excited by an impulsive localized force caused by the energy release in solar and stellar flares. Such oscillations have been observed on the Sun (‘sunquakes’), and created a lot of interesting discussions about physical mechanisms of the impulsive excitation and their relationship to the flare physics. The observation and theory have shown that most of a sunquake's energy is released in high-degree, high-frequency p modes. In addition, there have been reports on helioseismic observations of low-degree modes excited by strong solar flares. Much more powerful flares observed on other stars can cause ‘starquakes’ of substantially higher amplitude. Observations of such oscillations can provide new asteroseismic information and also constraints on mechanisms of stellar flares. I discuss the basic properties of sunquakes, and initial attempts to detect flare-excited oscillations in Kepler short-cadence data.


2004 ◽  
Vol 202 ◽  
pp. 112-114
Author(s):  
Eric P Rubenstein

Schaefer, King & Deliyannis (2000) reported the discovery of powerful stellar flares on single, solar-type stars. The outbursts on these F8-G8 stars were 102–107 times more powerful than the largest solar flares. The observed properties are similar to the magnetic reconnection driven events of RS CVn binaries. Rubenstein & Schaefer (2000) suggested that superflares may be magnetic reconnection events mediated by the interaction between the magnetospheres of a close-in jovian planet and the star. Stars exhibiting superflares may therefore harbor detectable planets.


2020 ◽  
Vol 494 (3) ◽  
pp. 3596-3610 ◽  
Author(s):  
L Doyle ◽  
G Ramsay ◽  
J G Doyle

ABSTRACT Superflares on solar-type stars have been a rapidly developing field ever since the launch of Kepler. Over the years, there have been several studies investigating the statistics of these explosive events. In this study, we present a statistical analysis of stellar flares on solar-type stars made using photometric data in 2-min cadence from Transiting Exoplanet Survey Satellite of the whole Southern hemisphere (sectors 1–13). We derive rotational periods for all the stars in our sample from rotational modulations present in the light curve as a result of large star-spot(s) on the surface. We identify 1980 stellar flares from 209 solar-type stars with energies in the range of 1031–1036 erg (using the solar flare classification, this corresponds to X1–X100 000) and conduct an analysis into their properties. We investigate the rotational phase of the flares and find no preference for any phase, suggesting the flares are randomly distributed. As a benchmark, we use GOES data of solar flares to detail the close relationship between solar flares and sunspots. In addition, we also calculate approximate spot areas for each of our stars and compare this to flare number, rotational phase, and flare energy. Additionally, two of our stars were observed in the continuous viewing zone with light-curves spanning 1 yr; as a result we examine the stellar variability of these stars in more detail.


2019 ◽  
Vol 489 (1) ◽  
pp. 437-445 ◽  
Author(s):  
L Doyle ◽  
G Ramsay ◽  
J G Doyle ◽  
K Wu

ABSTRACT Detailed studies of the Sun have shown that sunspots and solar flares are closely correlated. Photometric data from Kepler/K2 has allowed similar studies to be carried out on other stars. Here, we utilize Transiting Exoplanet Survey Satellite (TESS) photometric 2-min cadence of 167 low-mass stars from Sectors 1 to 3 to investigate the relationship between star-spots and stellar flares. From our sample, 90 per cent show clear rotational modulation likely due to the presence of a large, dominant star-spot and we use this to determine a rotational period for each star. Additionally, each low-mass star shows one or more flares in its light curve and using Gaia Data Release 2 parallaxes and SkyMapper magnitudes we can estimate the energy of the flares in the TESS band-pass. Overall, we have 1834 flares from the 167 low-mass stars with energies from 6.0 × 1029 to 2.4 × 1035 erg. We find none of the stars in our sample show any preference for rotational phase, suggesting the lack of a correlation between the large, dominant star-spot, and flare number. We discuss this finding in greater detail and present further scenarios to account for the origin of flares on these low-mass stars.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 507
Author(s):  
Luca Seravalli ◽  
Claudio Ferrari ◽  
Matteo Bosi

In this paper, we model the electrical properties of germanium nanowires with a particular focus on physical mechanisms of electrical molecular sensing. We use the Tibercad software to solve the drift-diffusion equations in 3D and we validate the model against experimental data, considering a p-doped nanowire with surface traps. We simulate three different types of interactions: (1) Passivation of surface traps; (2) Additional surface charges; (3) Charge transfer from molecules to nanowires. By analyzing simulated I–V characteristics, we observe that: (i) the largest change in current occurs with negative charges on the surfaces; (ii) charge transfer provides relevant current changes only for very high values of additional doping; (iii) for certain values of additional n-doping ambipolar currents could be obtained. The results of these simulations highlight the complexity of the molecular sensing mechanism in nanowires, that depends not only on the NW parameters but also on the properties of the molecules. We expect that these findings will be valuable to extend the knowledge of molecular sensing by germanium nanowires, a fundamental step to develop novel sensors based on these nanostructures.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1021
Author(s):  
Carla Abrahamian ◽  
Christian Grimm

Microphthalmia-associated transcription factor (MITF) is the principal transcription factor regulating pivotal processes in melanoma cell development, growth, survival, proliferation, differentiation and invasion. In recent years, convincing evidence has been provided attesting key roles of endolysosomal cation channels, specifically TPCs and TRPMLs, in cancer, including breast cancer, glioblastoma, bladder cancer, hepatocellular carcinoma and melanoma. In this review, we provide a gene expression profile of these channels in different types of cancers and decipher their roles, in particular the roles of two-pore channel 2 (TPC2) and TRPML1 in melanocytes and melanoma. We specifically discuss the signaling cascades regulating MITF and the relationship between endolysosomal cation channels, MAPK, canonical Wnt/GSK3 pathways and MITF.


2019 ◽  
Vol 490 (3) ◽  
pp. 4107-4120
Author(s):  
J Bentley ◽  
C G Tinney ◽  
S Sharma ◽  
D Wright

ABSTRACT We present criteria for the selection of M-dwarfs down to G < 14.5 using all-sky survey data, with a view to identifying potential M-dwarfs, to be confirmed spectroscopically by the FunnelWeb survey. Two sets of criteria were developed. The first, based on absolute magnitude in the Gaia G passband, with MG > 7.7, selects 76,392 stars, with 81.0 per cent expected to be M-dwarfs at a completeness of >97 per cent. The second is based on colour and uses Gaia, WISE, and 2MASS all-sky photometry. This criteria identifies 94,479 candidate M-dwarfs, of which between 29.4 per cent and 47.3 per cent are expected to be true M-dwarfs, and which contains 99.6 per cent of expected M-dwarfs. Both criteria were developed using synthetic galaxy model predictions, and a previously spectroscopically classified set of M- and K-dwarfs, to evaluate both M-dwarf completeness and false-positive detections (i.e. the non-M-dwarf contamination rate). Both criteria used in combination demonstrate how each excludes different sources of contamination. We therefore developed a final set of criteria that combines absolute magnitude and colour selection to identify 74,091 stars. All these sets of criteria select numbers of objects feasible for confirmation via massively multiplexed spectroscopic surveys like FunnelWeb.


1989 ◽  
Vol 104 (1) ◽  
pp. 289-298
Author(s):  
Giovanni Peres

AbstractThis paper discusses the hydrodynamic modeling of flaring plasma confined in magnetic loops and its objectives within the broader scope of flare physics. In particular, the Palermo-Harvard model is discussed along with its applications to the detailed fitting of X-ray light curves of solar flares and to the simulation of high-resolution Caxix spectra in the impulsive phase. These two approaches provide complementary constraints on the relevant features of solar flares. The extension to the stellar case, with the fitting of the light curve of an X-ray flare which occurred on Proxima Centauri, demonstrates the feasibility of using this kind of model for stars too. Although the stellar observations do not provide the wealth of details available for the Sun, and, therefore, constrain the model more loosely, there are strong motivations to pursue this line of research: the wider range of physical parameters in stellar flares and the possibility of studying further the solar-stellar connection.


2019 ◽  
Vol 489 (1) ◽  
pp. 962-976 ◽  
Author(s):  
A D P Howard ◽  
A P Whitworth ◽  
K A Marsh ◽  
S D Clarke ◽  
M J Griffin ◽  
...  

ABSTRACT We have analysed the Herschel and SCUBA-2 dust continuum observations of the main filament in the Taurus L1495 star-forming region, using the Bayesian fitting procedure ppmap. (i) If we construct an average profile along the whole length of the filament, it has FWHM $\simeq 0.087\pm 0.003\, {\rm pc};\,\,$ but the closeness to previous estimates is coincidental. (ii) If we analyse small local sections of the filament, the column-density profile approximates well to the form predicted for hydrostatic equilibrium of an isothermal cylinder. (iii) The ability of ppmap to distinguish dust emitting at different temperatures, and thereby to discriminate between the warm outer layers of the filament and the cold inner layers near the spine, leads to a significant reduction in the surface-density, $\varSigma$, and hence in the line-density, μ. If we adopt the canonical value for the critical line-density at a gas-kinetic temperature of $10\, {\rm K}$, $\mu _{{\rm CRIT}}\simeq 16\, {\rm M_{\odot }\, pc^{-1}}$, the filament is on average trans-critical, with ${\bar{\mu }}\sim \mu _{{\rm CRIT}};\,\,$ local sections where μ > μCRIT tend to lie close to prestellar cores. (iv) The ability of ppmap to distinguish different types of dust, i.e. dust characterized by different values of the emissivity index, β, reveals that the dust in the filament has a lower emissivity index, β ≲ 1.5, than the dust outside the filament, β ≳ 1.7, implying that the physical conditions in the filament have effected a change in the properties of the dust.


Sign in / Sign up

Export Citation Format

Share Document