scholarly journals Atmospheric Effects on Interferometric Observation

1988 ◽  
Vol 129 ◽  
pp. 545-545
Author(s):  
Han Wen-jun

In recent years, the influence of atmospheric irregularities on electronic systems has been recognized. How these irregularities affect electronic systems is related to the propagation environment, the scales of the irregularity, and parameters of the equipment. The phase deviation caused by the atmosphere is important to the interferometer. However, there are some filter effects, namely antenna aperture filter, Fresnel filter, and baseline filter, which must be considered. The first two filter out the effects of small scale irregularities, and the last one filters out larger ones.

2021 ◽  
Vol 13 (15) ◽  
pp. 3000
Author(s):  
Georg Zitzlsberger ◽  
Michal Podhorányi ◽  
Václav Svatoň ◽  
Milan Lazecký ◽  
Jan Martinovič

Remote-sensing-driven urban change detection has been studied in many ways for decades for a wide field of applications, such as understanding socio-economic impacts, identifying new settlements, or analyzing trends of urban sprawl. Such kinds of analyses are usually carried out manually by selecting high-quality samples that binds them to small-scale scenarios, either temporarily limited or with low spatial or temporal resolution. We propose a fully automated method that uses a large amount of available remote sensing observations for a selected period without the need to manually select samples. This enables continuous urban monitoring in a fully automated process. Furthermore, we combine multispectral optical and synthetic aperture radar (SAR) data from two eras as two mission pairs with synthetic labeling to train a neural network for detecting urban changes and activities. As pairs, we consider European Remote Sensing (ERS-1/2) and Landsat 5 Thematic Mapper (TM) for 1991–2011 and Sentinel 1 and 2 for 2017–2021. For every era, we use three different urban sites—Limassol, Rotterdam, and Liège—with at least 500km2 each, and deep observation time series with hundreds and up to over a thousand of samples. These sites were selected to represent different challenges in training a common neural network due to atmospheric effects, different geographies, and observation coverage. We train one model for each of the two eras using synthetic but noisy labels, which are created automatically by combining state-of-the-art methods, without the availability of existing ground truth data. To combine the benefit of both remote sensing types, the network models are ensembles of optical- and SAR-specialized sub-networks. We study the sensitivity of urban and impervious changes and the contribution of optical and SAR data to the overall solution. Our implementation and trained models are available publicly to enable others to utilize fully automated continuous urban monitoring.


2020 ◽  
Vol 10 (18) ◽  
pp. 6347
Author(s):  
Borja Pozo ◽  
José Ángel Araujo ◽  
Henrik Zessin ◽  
Loreto Mateu ◽  
José Ignacio Garate ◽  
...  

Wind energy harvesting is a widespread mature technology employed to collect energy, but it is also suitable, and not yet fully exploited at small scale, for powering low power electronic systems such as Internet of Things (IoT) systems like structural health monitoring, on-line sensors, predictive maintenance, manufacturing processes and surveillance. The present work introduces a three-phase mini wind energy harvester and an Alternate Current/Direct Current (AC/DC) converter. The research analyzes in depth a wind harvester’s operation principles in order to extract its characteristic parameters. It also proposes an equivalent electromechanical model of the harvester, and its accuracy has been verified with prototype performance results. Moreover, unlike most of the converters which use two steps for AC/DC signal conditioning—a rectifier stage and a DC/DC regulator—this work proposes a single stage converter to increase the system efficiency and, consequently, improve the energy transfer. Moreover, the most suitable AC/DC converter architecture was chosen and optimized for the best performance taking into account: the target power, efficiency, voltage levels, operation frequency, duty cycle and load required to implement the aforementioned converter.


2015 ◽  
Vol 8 (4) ◽  
pp. 4325-4345 ◽  
Author(s):  
M. Queißer ◽  
D. Granieri ◽  
M. Burton ◽  
A. La Spina ◽  
G. Salerno ◽  
...  

Abstract. We intercompare results of three independent approaches to quantify a vented CO2 release at a strongly non-uniform CO2 Earth degassing at Caldara di Manziana, central Italy. An integrated path differential absorption lidar prototype and a commercial open path FTIR system were measuring column averaged CO2 concentrations in parallel at two different paths. An Eulerian gas dispersion model simulated 3-D CO2 concentration maps in the same area, using in situ CO2 flux input data acquired at 152 different points. Local processes the model does not account for, such as small-scale and short-lived wind eddies, govern CO2 concentrations in the instrument measurement paths. The model, on the other hand, also considers atmospheric effects that are out of the field of view of the instruments. Despite this we find satisfactory agreement between modeled and measured CO2 concentrations under certain meteorological conditions. Under these conditions the results suggest that an Eulerian dispersion model and optical remote sensing can be used as an integrated, complementary monitoring approach for CO2 hazard or leakage assessment. Furthermore, the modeling may assist in evaluating CO2 sensing surveys in the future. CO2 column amounts from differential absorption lidar are in line with those from FTIR for both paths with a mean residual of the time series of 44 and 34 ppm, respectively. This experiment is a fundamental step forward in the deployment of the differential absorption lidar prototype as a highly portable active remote sensing instrument probing vented CO2 emissions, including volcanoes.


2018 ◽  
Vol 8 ◽  
pp. A15 ◽  
Author(s):  
Haroldo Antonio Marques ◽  
Heloísa Alves Silva Marques ◽  
Marcio Aquino ◽  
Sreeja Vadakke Veettil ◽  
João Francisco Galera Monico

GPS and GLONASS are currently the Global Navigation Satellite Systems (GNSS) with full operational capacity. The integration of GPS, GLONASS and future GNSS constellations can provide better accuracy and more reliability in geodetic positioning, in particular for kinematic Precise Point Positioning (PPP), where the satellite geometry is considered a limiting factor to achieve centimeter accuracy. The satellite geometry can change suddenly in kinematic positioning in urban areas or under conditions of strong atmospheric effects such as for instance ionospheric scintillation that may degrade satellite signal quality, causing cycle slips and even loss of lock. Scintillation is caused by small scale irregularities in the ionosphere and is characterized by rapid changes in amplitude and phase of the signal, which are more severe in equatorial and high latitudes geomagnetic regions. In this work, geodetic positioning through the PPP method was evaluated with integrated GPS and GLONASS data collected in the equatorial region under varied scintillation conditions. The GNSS data were processed in kinematic PPP mode and the analyses show accuracy improvements of up to 60% under conditions of strong scintillation when using multi-constellation data instead of GPS data alone. The concepts and analyses related to the ionospheric scintillation effects, the mathematical model involved in PPP with GPS and GLONASS data integration as well as accuracy assessment with data collected under ionospheric scintillation effects are presented.


Author(s):  
Raghav Mahalingam ◽  
Ari Glezer

This paper explores the novel technique of forced synthetic jet cooling within high-aspect ratio ducts that can be accommodated within low-profile electronic systems. A synthetic jet is an intense, small-scale turbulent jet that is synthesized directly from the fluid in the system in which it is embedded and is formed when fluid is alternately sucked and ejected from the cavity by the motion of a diaphragm bounding the cavity, so that there is no net mass addition to the system. This feature obviates the need for input piping or complex fluidic packaging and makes synthetic jets ideally suited for the low-profile geometries of portables. In the current work, a simple configuration of a 2-D synthetic jet ejector in a rectangular channel is used to ascertain the flow and thermal performance curves, overall thermal resistance and effectiveness for the synthetic jet ejector channel flow.


Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 922 ◽  
Author(s):  
Dong Yang ◽  
Hao Wang ◽  
Shenglin Luo ◽  
Changning Wang ◽  
Sheng Zhang ◽  
...  

Art and science represent human creativity and rational thinking, respectively. When the two seemingly opposite fields are intertwined, there is always a life-changing spark. In particular, the integration of ancient traditional Chinese art into the latest electronic devices is always been an unexcavated topic. Fabricating two-dimensional material with a tensile strain less than 3% with an ultimate global stretch has been an important problem that plagues the current flexible electronics field. The current research is limited to material in small scale, and it is always necessary to develop and extend large-sized flexible electronic systems. Here, inspired by the traditional Chinese paper-cut structure, we present a highly deformable multifunctional electronic system based on the MoS2 nanosheet. In this work, we first demonstrate how the traditional paper-cut structure can open the view of flexible electronics. In order to obtain a large area of MoS2 with excellent performance, we use a metal-assisted exfoliation method to transfer MoS2, followed by fabricating a field effect transistor to characterize its excellent electrical properties. Two photodetectors and a temperature sensor are produced with good performance. The mechanical simulation proves that the structure has more advantages in stretchability than other typical paper-cut structures. From the experimental and mechanical point of view, it is proved that the device can work stably under high deformation. We finally show that the device has broad application prospects in highly deformed organs, tissues, and joints. These findings set a good example of traditional Chinese culture to guide innovation in the field of electronic devices.


2020 ◽  
Vol 12 (6) ◽  
pp. 911 ◽  
Author(s):  
Gerald Forkuor ◽  
Tobias Ullmann ◽  
Mario Griesbeck

Illegal small-scale mining (galamsey) in South-Western Ghana has grown tremendously in the last decade and caused significant environmental degradation. Excessive cloud cover in the area has limited the use of optical remote sensing data to map and monitor the extent of these activities. This study investigated the use of annual time-series Sentinel-1 data to map and monitor illegal mining activities along major rivers in South-Western Ghana between 2015 and 2019. A change detection approach, based on three time-series features—minimum, mean, maximum—was used to compute a backscatter threshold value suitable to identify/detect mining-induced land cover changes in the study area. Compared to the mean and maximum, the minimum time-series feature (in both VH and VV polarization) was found to be more sensitive to changes in backscattering within the period of investigation. Our approach permitted the detection of new illegal mining areas on an annual basis. A backscatter threshold value of +1.65 dB was found suitable for detecting illegal mining activities in the study area. Application of this threshold revealed illegal mining area extents of 102 km2, 60 km2 and 33 km2 for periods 2015/2016–2016/2017, 2016/2017–2017/2018 and 2017/2018–2018/2019, respectively. The observed decreasing trend in new illegal mining areas suggests that efforts at stopping illegal mining yielded positive results in the period investigated. Despite the advantages of Synthetic Aperture Radar data in monitoring phenomena in cloud-prone areas, our analysis revealed that about 25% of the Sentinel-1 data, mostly acquired in March and October (beginning and end of rainy season respectively), were unusable due to atmospheric effects from high intensity rainfall events. Further investigation in other geographies and climatic regions is needed to ascertain the susceptibility of Sentinel-1 data to atmospheric conditions.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Baoshan Yang ◽  
Ma Zhongcheng ◽  
Lingguo Zhu

A theoretical and experimental study on the separation method of the incident sound field based on a small-scale vector sensor is proposed in this study, with the aim of resolving the problem of separation and acquisition of an incident sound field under the interference of near-field sound scattering from a cylindrical shell in water. The method of identifying and separating sound waves obtained under plane wave conditions is extended to complex sound-field conditions. Simulation and experimental results show that the vector separation method can greatly reduce the sound pressure amplitude and the phase deviation of the incident sound field, which is affected by near-field scattering from the cylindrical surface. The separation accuracy is related to the deviation angle and the distance from the target surface. The maximum deviation of the pressure amplitude is less than 1 dB, and the phase deviation is less than 3°. This method can effectively suppress the near-field scattering of the cylindrical shell and improve the separation accuracy of the incident sound field. The research results have reference value for a range of practical engineering applications.


Background. Today it is important to design small-scale antennas that operate efficiently over a wide frequency range to create modern electronic systems. Such antennas will come in a number of useful applications in both modern telecommunications and radar systems for various purposes. It is known that the cutoff frequency depends on the antenna size so the task of miniaturizing the antenna can be considered as follows: for a given antenna size, you must create a design for which the cutoff frequency will be the lowest Objectives. The purpose of the work is to offer the design of a biconical antenna, which will provide efficient radiation of an electromagnetic wave at low frequencies. To analyze the dependence of the radiated power on the wavelength for various antenna configurations. Materials and methods. The paper investigates the modification of a biconical antenna, which is an irregular conical line with a dielectric. As a method of calculating radiation in the near zone of the antenna, the finite time difference method in the spherical coordinate system (spherical FDTD) which is adapted for the axially symmetric case is used. To calculate the fields in the far zone, we used the transition from the near zone to the far zone (Near to Far Transformation N2F) in the frequency domain. Results. The radiation of a biconical antenna in a pulsed mode is considered. The ordinary construction of a biconical antenna and its other construction (a “capacitive type” biconical antenna) are investigated. The emitted by the antenna power at different frequencies was investigated. Antenna radiation at low and high frequencies was analyzed. Conclusions. It is shown that in the antenna of the “capacitive type” the critical frequency of the modes decreases and their conversion to the dipole mode of free space is more efficient. It is shown that the biconical antenna of the “capacitive type” efficiently emits electromagnetic energy at low frequencies and it can be used to create small antennas.


Sign in / Sign up

Export Citation Format

Share Document