XVII.—Axiomatic Treatment of Kinematical Relativity

Author(s):  
G. C. McVittie

The suggestion has recently been put forward that the laws of nature can be established by purely deductive reasoning instead of by induction from observation. We may, with Eddington, start the chain of reasoning from epistemological premises or, with E. A. Milne, from axiomatic statements regarding the nature of the system to be studied. Different opinions may be held regarding the value of a deductive method, but a final judgment can hardly be passed on a deductive theory until the initial premises are clearly revealed. We may, indeed, justly require of the author of such a theory that he fulfil the following conditions. He should, firstly, be himself aware of all the axioms which he employs. If he is not, there is the obvious danger that he may use inductions from observation without being aware of doing so. But he may also arrive at quite erroneous conclusions about the range of validity of his results. For instance, a deductive theory may produce a formula which is interpreted as the inverse square law of gravitation. It is then very necessary to know whether the initial premises are axioms concerning the nature of the universe as a whole or whether they merely define local conditions. In the first case the law of gravitation is deduced from the nature of the universe as a whole, in the second it is shown to be merely a “local” law.

The concept of a law of nature, while familiar, is deeply puzzling. Theorists such as Descartes think a divine being governs the universe according to the laws which follow from that being’s own nature. Newton detaches the concept from theology and is agnostic about the ontology underlying the laws of nature. Some later philosophers treat laws as summaries of events or tools for understanding and explanation, or identify the laws with principles and equations fundamental to scientific theories. In the first part of this volume, essays from leading historians of philosophy identify central questions: are laws independent of the things they govern, or do they emanate from the powers of bodies? Are the laws responsible for the patterns we see in nature, or should they be collapsed into those patterns? In the second part, contributors at the forefront of current debate evaluate the role of laws in contemporary Best System, perspectival, Kantian, and powers- or mechanisms-based approaches. These essays take up pressing questions about whether the laws of nature can be consistent with contingency, whether laws are based on the invariants of scientific theories, and how to deal with exceptions to laws. These twelve essays, published here for the first time, will be required reading for anyone interested in metaphysics, philosophy of science, and the histories of these disciplines.


2021 ◽  
Vol 48 (1) ◽  
pp. 45-53
Author(s):  
Paweł Matyaszewski

The authors of the revolutionary calendar, in particular Gilbert Romme and Fabre d’Églantine not only want to put the past behind by implicating a new time and new order but also try to prove the relation between history and nature using the example of the events of the Revolution and their compliance with the laws of the universe. They introduce an innovative nomenclature in order to specify the names of particular days and months but they do not change the natural four-season model of division. The goal of the presented idea is to enrich the natural cycle with a new content expressing the spirit and the objectives of the Republic while following the laws of nature.


2018 ◽  
pp. 1-4
Author(s):  
Alvaro De Rújula

Beauty and simplicity, a scientist’s view. A first encounter with Einstein’s equations of General Relativity, space-time, and Gravity. Ockham’s Razor. Why the Universe is the way it is: The origin of the laws of Nature.


2020 ◽  
pp. 58-66
Author(s):  
Nicholas Mee

Kepler sought patterns and symmetry in the laws of nature. In 1611 he wrote a booklet, De Niva Sexangular (The Six-Cornered Snowflake), in which he attempted to explain the structure of familiar symmetrical objects. Almost 300 years before the existence of atoms was definitively established, he concluded that the symmetrical shape of crystals is due to the regular arrangement of the atoms of which they are formed. He also investigated the structure of geometrical objects such as the Platonic solids and the regular stellated polyhedra, known today as the Kepler–Poinsot polyhedra. Like Kepler, today’s theoretical physicists are seeking patterns and symmetries that explain the universe. According to string theorists, the universe includes six extra hidden spatial dimensions, forming a shape known as a Calabi–Yau manifold. No-one knows whether string theory will revolutionize physics like Kepler’s brilliant insights, or whether it will turn out to be a red herring.


Both Big-Bang and stellar nucleosynthesis have outcomes related to the density of baryonic matter, but whereas in the first case there is a standard model that makes very precise predictions of light element abundances as a function of the mean density of baryons in the Universe, in the second case various uncertainties permit only very limited conclusions to be drawn. As far as Big-Bang synthesis and the light elements are concerned, existing results on D, 3 He and 7 Li indicate a value of Ω N h 2 0 greater than 0.01 and less than 0.025, where Ω N is the ratio of baryonic density to the closure density and h 0 is the Hubble constant in units of 100 km s -1 Mpc -1 ; probably 0.5 < h 0 < 1. New results on the primordial helium abundance give a still tighter upper limit to Ω N ,Ω N h 2 0 < 0.013, which when compared with redshift surveys giving Ω > 0.05 implies that the observed matter can all be baryonic only if the various uncertainties are stretched to their limits.


2020 ◽  
Vol 35 (22) ◽  
pp. 2050124
Author(s):  
Parth Shah ◽  
Gauranga C. Samanta

In this work we try to understand the late-time acceleration of the universe by assuming some modification in the geometry of the space and using dynamical system analysis. This technique allows to understand the behavior of the universe without analytically solving the field equations. We study the acceleration phase of the universe and stability properties of the critical points which could be compared with observational results. We consider an asymptotic behavior of two particular models [Formula: see text] and [Formula: see text] with [Formula: see text], [Formula: see text], [Formula: see text] for the study. As a first case we fix the value of [Formula: see text] and analyze for all [Formula: see text]. Later as second case, we fix the value of [Formula: see text] and calculation are done for all [Formula: see text]. At the end all the calculations for the generalized case have been shown and results have been discussed in detail.


1971 ◽  
Vol 13 (2) ◽  
pp. 196-216 ◽  
Author(s):  
R. S. Khare

Recently Singer (1966: 497–505), while reviewing a book on economic development and Hinduism, underlined the necessity of recognizing the ‘deficiencies’ of the hypothetico-deductive method in studying social change in India. He alluded to Weber's thesis (ideal-typical relations of the Hindu ‘ethic’ to economic development) and its possible ‘distortions’ under this approach, especially if applied ‘as a basis for quick diagnoses of the ideological and structural factors impeding or facilitating economic development…’ (p. 498), or when applied to a general analysis of the social and cultural ‘transformations’ involved in modernization. He noted two major limitations: first, that under hypothetico-deductive use of ideal types one tries to deduce ‘realistic consequences from basic beliefs, values, motives postulated in isolation from concrete social and cultural contexts’ (p. 501), and second (which is perhaps a related consequence), that when deducing general tendencies, one fails ‘to specify conditions and magnitudes under which the conclusions are valid’ (p. 502). While Singer recognizes that this approach ‘will eventually complement’anthropologists’ narrative, descriptive, and inductive approaches, he stresses that the present need is to accumulate relevant empirical studies of the latter kind, against which we can check the conclusions of hypothetico-deductive theory.


2018 ◽  
Vol 41 (2) ◽  
pp. 155-182 ◽  
Author(s):  
W. Alex Mason ◽  
Jasney Cogua-Lopez ◽  
Charles B. Fleming ◽  
Lawrence M. Scheier

Current systems used to determine whether prevention programs are “evidence-based” rely on the logic of deductive reasoning. This reliance has fostered implementation of strategies with explicitly stated evaluation criteria used to gauge program validity and suitability for dissemination. Frequently, investigators resort to the randomized controlled trial (RCT) combined with null hypothesis significance testing (NHST) as a means to rule out competing hypotheses and determine whether an intervention works. The RCT design has achieved success across numerous disciplines but is not without limitations. We outline several issues that question allegiance to the RCT, NHST, and the hypothetico-deductive method of scientific inquiry. We also discuss three challenges to the status of program evaluation including reproducibility, generalizability, and credibility of findings. As an alternative, we posit that extending current program evaluation criteria with principles drawn from an abductive theory of method (ATOM) can strengthen our ability to address these challenges and advance studies of drug prevention. Abductive reasoning involves working from observed phenomena to the generation of alternative explanations for the phenomena and comparing the alternatives to select the best possible explanation. We conclude that an ATOM can help increase the influence and impact of evidence-based prevention for population benefit.


Sign in / Sign up

Export Citation Format

Share Document