scholarly journals Probing the Tides in Interacting Galaxy Pairs

1990 ◽  
Vol 124 ◽  
pp. 537-542
Author(s):  
Kirk D. Borne

AbstractDetailed spectroscopic and imaging observations of colliding elliptical galaxies have revealed unmistakable diagnostic signatures of the tidal interactions. It is possible to compare both the distorted luminosity distributions and the disturbed internal rotation profiles with numerical simulations in order to model the strength of the tidal gravitational field acting within a given pair of galaxies. Using the best-fit numerical model, one can then measure directly the mass of a specific interacting binary system. This technique applies to individual pairs and therefore complements the classical methods of measuring the masses of galaxy pairs in well-defined statistical samples. The “personalized” modeling of galaxy pairs also permits the derivation of each binary’s orbit, spatial orientation, and interaction timescale. Similarly, one can probe the tides in less-detailed observations of disturbed galaxies in order to estimate some of the physical parameters for larger samples of interacting galaxy pairs. These parameters are useful inputs to the more universal problems of (1) the galaxy merger rate, (2) the strength and duration of the driving forces behind tidally-stimulated phenomena (e.g., starbursts and maybe QSOs), and (3) the identification of long-lived signatures of interaction/merger events.

2021 ◽  
Vol 923 (1) ◽  
pp. 101
Author(s):  
Jinhyub Kim ◽  
M. James Jee ◽  
John P. Hughes ◽  
Mijin Yoon ◽  
Kim HyeongHan ◽  
...  

Abstract We present an improved weak-lensing (WL) study of the high-z (z = 0.87) merging galaxy cluster ACT-CL J0102–4915 (“El Gordo”) based on new wide-field Hubble Space Telescope imaging data. The new imaging data cover the ∼3.5 × ∼3.5 Mpc region centered on the cluster and enable us to detect WL signals beyond the virial radius, which was not possible in previous studies. We confirm the binary mass structure consisting of the northwestern (NW) and southeastern (SE) subclusters and the ∼2σ dissociation between the SE mass peak and the X-ray cool core. We obtain the mass estimates of the subclusters by simultaneously fitting two Navarro–Frenk–White (NFW) halos without employing mass–concentration relations. The masses are M 200 c NW = 9.9 − 2.2 + 2.1 × 1014 and M 200 c SE = 6.5 − 1.4 + 1.9 × 1014 M ⊙ for the NW and SE subclusters, respectively. The mass ratio is consistent with our previous WL study but significantly different from the previous strong-lensing results. This discrepancy is attributed to the use of extrapolation in strong-lensing studies because the SE component possesses a higher concentration. By superposing the two best-fit NFW halos, we determine the total mass of El Gordo to be M 200 c = 2.13 − 0.23 + 0.25 × 1015 M ⊙, which is ∼23% lower than our previous WL result [M 200c = (2.76 ± 0.51) × 1015 M ⊙]. Our updated mass is a more direct measurement, since we are not extrapolating to R 200c as in all previous studies. The new mass is compatible with the current ΛCDM cosmology.


2000 ◽  
Vol 174 ◽  
pp. 74-80
Author(s):  
Paul Goudfrooij

AbstractThe properties of dust in giant elliptical galaxies are reviewed, with particular emphasis on the influence of the environment.After normalizing by the optical luminosities, a strong anticorrelation between the masses of dust and hot gas in X-ray bright ellipticals is found. Furthermore, large-scale, regularly-shaped dust lanes (which are symmetric with respect to the galaxy nucleus) are only found to be present in ellipticals with the lowest ratios of the mass of hot gas to the blue luminosity (Mhot/LB ≲ 0.04 in solar units). This can be explained by the short time scale for the destruction of dust grains within the hot, X-ray- emitting gas compared to the formation timescale of such dust lanes in early-type galaxies.Dust within ellipticals in “loose” environments (i.e. in the field or in loose groups) is typically characterized by small values of RV ≡ AV/EB−V (i-e. small characteristic grain sizes), and distributed in dust lanes with a smooth, relaxed morphology. On the other hand, dust in ellipticals that are in or near the center of dense groups or clusters is typically much more irregularly distributed, and characterized by RV values that are close to the Galactic one.I predict that ellipticals containing “relaxed” dust lanes with typical dust masses of 106 − 107M⊙ do not contain hot, X-ray-emitting gas.


1979 ◽  
Vol 84 ◽  
pp. 441-450 ◽  
Author(s):  
J. P. Ostriker ◽  
J. A. R. Caldwell

The galaxy is represented schematically by a three-component model: a disc having the form of a modified exponential distribution, a spheroidal (bulge + nucleus) component and a dark halo component which, following the nomenclature of Einasto, we call the corona. The shapes of these components, chosen on the basis of observations of other galaxies, are consistent with imperfect knowledge of the Galaxy; values of the adjustable parameters are chosen by a least square minimization technique to best fit the most accurate kinematical and dynamical galactic observations. The local radius, circular velocity and escape velocity are found to be (R⊙, V⊙, Vesc) = (9.05 ± 0.33 kpc, 247 ± 13 km/s, 550 ± 24) quite close to the values determined from observations directly. The masses in the three components are (MD, MSp, MC) = (0.78 ± 0.13, 0.81 ± 0.09, 20.3) × 1011 M⊙ for a model with coronal radius of 335 kpc. If the quite uncertain coronal radius is reduced to 100 kpc the model is essentially unchanged except that then MC = 6.65 × 1011 M⊙. The disc and spheroidal components have in either case luminosities (in the visual band of (LD, LSp) = (2.0, 0.2) × 1010 L⊙. The galaxy is a normal giant spiral of type Sb-Sc similar to NGC 4565.


1975 ◽  
Vol 69 ◽  
pp. 271-285
Author(s):  
J. R. Gott

Simple collapse and violent relaxation models produce sharply cut off envelopes with ϱ(r) ∝ r–4, whereas actual elliptical galaxies have more extended envelopes approximately given by ϱ(r) ∝ r–3 as implied by Hubble's Law. Numerical models are presented, showing that when cosmological infall effects are included, galaxies are produced with more extended envelopes having a ϱ(r) ∝ r–2.8 dependence in excellent agreement with Hubble's Law. We have also computed a realistic rotating model of an E5 galaxy which includes infall effects and where the angular momentum of the galaxy is gained through tidal interactions with neighboring protogalaxies. The envelope displays a Hubble dependence but at great distances shows a cutoff due to the tidal effects. The model is compared to the E5 galaxy NGC 4697 and provides an outstandingly good fit to the observations. Except for simple scaling, this excellent fit is produced without the use of any free fitting parameters.


Author(s):  
Katherine Blundell

Infra-red observations have been used by teams in California and Germany to measure the mass of the black hole at the centre of the Galaxy at just over 4 million times the mass of our Sun. ‘How do you weigh a black hole?’ shows that similar dynamic techniques can be used to measure the masses of the millions of black holes that pervade our Galaxy as stars and black holes are frequently found as pairs in a binary system. The smallest black hole that we can measure is a few times the mass of our Sun, but the heaviest stellar-mass black holes can exceed a hundred times the mass of our Sun.


Author(s):  
Joseph A O’Leary ◽  
Benjamin P Moster ◽  
Thorsten Naab ◽  
Rachel S Somerville

Abstract We explore the galaxy-galaxy merger rate with the empirical model for galaxy formation, emerge. On average, we find that between 2 per cent and 20 per cent of massive galaxies (log10(m*/M⊙) ≥ 10.3) will experience a major merger per Gyr. Our model predicts galaxy merger rates that do not scale as a power-law with redshift when selected by descendant stellar mass, and exhibit a clear stellar mass and mass-ratio dependence. Specifically, major mergers are more frequent at high masses and at low redshift. We show mergers are significant for the stellar mass growth of galaxies log10(m*/M⊙) ≳ 11.0. For the most massive galaxies major mergers dominate the accreted mass fraction, contributing as much as 90 per cent of the total accreted stellar mass. We reinforce that these phenomena are a direct result of the stellar-to-halo mass relation, which results in massive galaxies having a higher likelihood of experiencing major mergers than low mass galaxies. Our model produces a galaxy pair fraction consistent with recent observations, exhibiting a form best described by a power-law exponential function. Translating these pair fractions into merger rates results in an inaccurate prediction compared to the model intrinsic values when using published observation timescales. We find the pair fraction can be well mapped to the intrinsic merger rate by adopting an observation timescale that decreases linearly with redshift as Tobs = −0.36(1 + z) + 2.39 [Gyr], assuming all observed pairs merge by z = 0.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Gabriel Luz Almeida ◽  
Stefano Foffa ◽  
Riccardo Sturani

Abstract We apply the classical double copy to the calculation of self-energy of composite systems with multipolar coupling to gravitational field, obtaining next-to-leading order results in the gravitational coupling GN by generalizing color to kinematics replacement rules known in literature. When applied to the multipolar description of the two-body system, the self-energy diagrams studied in this work correspond to tail processes, whose physical interpretation is of radiation being emitted by the non-relativistic source, scattered by the curvature generated by the binary system and then re-absorbed by the same source. These processes contribute to the conservative two-body dynamics and the present work represents a decisive step towards the systematic use of double copy within the multipolar post-Minkowskian expansion.


2020 ◽  
Vol 29 (1) ◽  
pp. 72-80 ◽  
Author(s):  
Fatemeh Davoudi ◽  
Atila Poro ◽  
Fahri Alicavus ◽  
Afshin Halavati ◽  
Saeed Doostmohammadi ◽  
...  

AbstractNew observations of the eclipsing binary system V1848 Ori were carried out using the V filter resulting in a determination of new times of minima and new ephemeris were obtained. We presented the first complete analysis of the system’s orbital period behavior and analysis of O-C diagram done by the GA and MCMC approaches in OCFit code. The O-C diagram demonstrates a sinusoidal trend in the data; this trend suggests a cyclic change caused by the LITE effect with a period of 10.57 years and an amplitude of 7.182 minutes. It appears that there is a third body with mass function of f (m3) = 0.0058 M⊙ in this binary system. The light curves were analyzed using the Wilson-Devinney code to determine some geometrical and physical parameters of the system. These results show that V1848 Ori is a contact W UMa binary system with the mass ratio of q = 0.76 and a weak fillout factor of 5.8%. The O’Connell effect was not seen in the light curve and there is no need to add spot.


1993 ◽  
Vol 138 ◽  
pp. 192-196
Author(s):  
L.S. Lyubimkov ◽  
T.M. Rachkovskaya

Duplicity is a very widespread phenomenon among Am-stars. For instance, Abt (1961) investigating 25 such stars found out that 22 of them are spectroscopic binaries. However this important phenomenon is ignored usually in chemical composition investigations of Am-stars. Consequently some “mean” element abundances are determined, which can noticeably differ from real abundances in atmospheres of components. Moreover false chemical anomalies can appear, as shown by the theoretical modelling of spectra of binary stars (Lyubimkov, 1989, 1992). Meanwhile accurate data on chemical composition of Am-stars must be considered as observational test for any hypothesis suggested for explanation of these objects.


2004 ◽  
Vol 19 (10) ◽  
pp. 727-743 ◽  
Author(s):  
P. C. W. DAVIES

Recent advances in string theory and inflationary cosmology have led to a surge of interest in the possible existence of an ensemble of cosmic regions, or "universes", among the members of which key physical parameters, such as the masses of elementary particles and the coupling constants, might assume different values. The observed values in our cosmic region are then attributed to an observer selection effect (the so-called anthropic principle). The assemblage of universes has been dubbed "the multiverse". In this paper we review the multiverse concept and the criticisms that have been advanced against it on both scientific and philosophical grounds.


Sign in / Sign up

Export Citation Format

Share Document