scholarly journals Modelling Global Ice and Climate Changes Through the Ice Ages

1990 ◽  
Vol 14 ◽  
pp. 23-27 ◽  
Author(s):  
W.F. Budd ◽  
P. Rayner

A global energy balance model has been developed which includes an interactive mixed layer ocean, sea ice, and snow and ice cover on the land. A full annual cycle is included and the model provides a close simulation to the variation of surface temperature through the year over land and over ocean as a function of latitude. The present annual variations of sea ice and snow on the ground are also well simulated. The model has been used for a wide range of sensitivity tests which include variations of the solar constant, surface albedos, and the effects of feed-back, or absence of feed-back, in the reponse of the snow and ice cover. Studies have been made of the model’s response to the long term variations in the Earth’s Orbital characteristics such as changes in the perihelion, the obliquity and the eccentricity as well as various combined changes. Independent sensitivity studies of the response of the model to the presence of the large ice sheets in the northern hemisphere have also been carried out. A series of model runs have been performed to study climatic changes around the globe from 160 000 years Β.P. (Before Present) to the present. An examination is made of the impacts of the orbital changes alone, as well as with the feed-back from the large ice sheets.

1990 ◽  
Vol 14 ◽  
pp. 23-27
Author(s):  
W.F. Budd ◽  
P. Rayner

A global energy balance model has been developed which includes an interactive mixed layer ocean, sea ice, and snow and ice cover on the land. A full annual cycle is included and the model provides a close simulation to the variation of surface temperature through the year over land and over ocean as a function of latitude. The present annual variations of sea ice and snow on the ground are also well simulated. The model has been used for a wide range of sensitivity tests which include variations of the solar constant, surface albedos, and the effects of feed-back, or absence of feed-back, in the reponse of the snow and ice cover.Studies have been made of the model’s response to the long term variations in the Earth’s Orbital characteristics such as changes in the perihelion, the obliquity and the eccentricity as well as various combined changes. Independent sensitivity studies of the response of the model to the presence of the large ice sheets in the northern hemisphere have also been carried out. A series of model runs have been performed to study climatic changes around the globe from 160 000 years Β.P. (Before Present) to the present. An examination is made of the impacts of the orbital changes alone, as well as with the feed-back from the large ice sheets.


2020 ◽  
Vol 14 (2) ◽  
pp. 751-767
Author(s):  
Shiming Xu ◽  
Lu Zhou ◽  
Bin Wang

Abstract. Satellite and airborne remote sensing provide complementary capabilities for the observation of the sea ice cover. However, due to the differences in footprint sizes and noise levels of the measurement techniques, as well as sea ice's variability across scales, it is challenging to carry out inter-comparison or consistently study these observations. In this study we focus on the remote sensing of sea ice thickness parameters and carry out the following: (1) the analysis of variability and its statistical scaling for typical parameters and (2) the consistency study between airborne and satellite measurements. By using collocating data between Operation IceBridge and CryoSat-2 (CS-2) in the Arctic, we show that consistency exists between the variability in radar freeboard estimations, although CryoSat-2 has higher noise levels. Specifically, we notice that the noise levels vary among different CryoSat-2 products, and for the European Space Agency (ESA) CryoSat-2 freeboard product the noise levels are at about 14 and 20 cm for first-year ice (FYI) and multi-year ice (MYI), respectively. On the other hand, for Operation IceBridge and NASA's Ice, Cloud, and land Elevation Satellite (ICESat), it is shown that the variability in snow (or total) freeboard is quantitatively comparable despite more than a 5-year time difference between the two datasets. Furthermore, by using Operation IceBridge data, we also find widespread negative covariance between ice freeboard and snow depth, which only manifests on small spatial scales (40 m for first-year ice and about 80 to 120 m for multi-year ice). This statistical relationship highlights that the snow cover reduces the overall topography of the ice cover. Besides this, there is prevalent positive covariability between snow depth and snow freeboard across a wide range of spatial scales. The variability and consistency analysis calls for more process-oriented observations and modeling activities to elucidate key processes governing snow–ice interaction and sea ice variability on various spatial scales. The statistical results can also be utilized in improving both radar and laser altimetry as well as the validation of sea ice and snow prognostic models.


2019 ◽  
Author(s):  
Mark A. Tschudi ◽  
Walter N. Meier ◽  
J. Scott Stewart

Abstract. A new version of the sea ice motion and age products distributed at the National Snow and Ice Data Center's NASA Snow and Ice Distributed Active Archive Center has been developed. The new version, 4.0, includes several significant upgrades in processing, corrects known issues with the previous version, and updates the time series through 2018, with regular updates planned for the future. Here, we provide a history of the product development, discuss the improvements to the algorithms that create these products, and compare the Version 4 products to the previous version. While Version 4 algorithm changes were significant, the impact on the products is relatively minor, particularly for more recent years. Trends in motion and age are not substantially different between the versions. Changes in sea ice motion and age derived from the product show a significant shift in the Arctic ice cover, from a pack with a high concentration of older ice, to a sea ice cover dominated by first-year ice, which is more susceptible to summer melt. We also observe an increase in the speed of the ice in recent years, which is anticipated with the annual decrease in sea ice extent.


2017 ◽  
Vol 30 (13) ◽  
pp. 5119-5140 ◽  
Author(s):  
Woosok Moon ◽  
J. S. Wettlaufer

The noise forcing underlying the variability in the Arctic ice cover has a wide range of principally unknown origins. For this reason, the analytical and numerical solutions of a stochastic Arctic sea ice model are analyzed with both additive and multiplicative noise over a wide range of external heat fluxes Δ F0, corresponding to greenhouse gas forcing. The stochastic variability fundamentally influences the nature of the deterministic steady-state solutions corresponding to perennial and seasonal ice and ice-free states. Thus, the results are particularly relevant for the interpretation of the state of the system as the ice cover thins with Δ F0, allowing a thorough examination of the differing effects of additive versus multiplicative noise. In the perennial ice regime, the principal stochastic moments are calculated and compared to those determined from a stochastic perturbation theory described previously. As Δ F0 increases, the competing contributions to the variability of the destabilizing sea ice–albedo feedback and the stabilizing longwave radiative loss are examined in detail. At the end of summer the variability of the stochastic paths shows a clear maximum, which is due to the combination of the increasing influence of the albedo feedback and an associated “memory effect,” in which fluctuations accumulate from early spring to late summer. This is counterbalanced by the stabilization of the ice cover resulting from the longwave loss of energy from the ice surface, which is enhanced during winter, thereby focusing the stochastic paths and decreasing the variability. Finally, common examples in stochastic dynamics with multiplicative noise are discussed wherein the choice of the stochastic calculus (Itô or Stratonovich) is not necessarily determinable a priori from observations alone, which is why both calculi are treated on equal footing herein.


2021 ◽  
Vol 15 (10) ◽  
pp. 4781-4805
Author(s):  
Alicia A. Dauginis ◽  
Laura C. Brown

Abstract. Arctic snow and ice cover are vital indicators of climate variability and change, yet while the Arctic shows overall warming and dramatic changes in snow and ice cover, the response of these high-latitude regions to recent climatic change varies regionally. Although previous studies have examined changing snow and ice separately, examining phenology changes across multiple components of the cryosphere together is important for understanding how these components and their response to climate forcing are interconnected. In this work, we examine recent changes in sea ice, lake ice, and snow together at the pan-Arctic scale using the Interactive Multisensor Snow and Ice Mapping System 24 km product from 1997–2019, with a more detailed regional examination from 2004–2019 using the 4 km product. We show overall that for sea ice, trends toward earlier open water (−7.7 d per decade, p<0.05) and later final freeze (10.6 d per decade, p<0.05) are evident. Trends toward earlier first snow-off (−4.9 d per decade, p<0.05), combined with trends toward earlier first snow-on (−2.8 d per decade, p<0.05), lead to almost no change in the length of the snow-free season, despite shifting earlier in the year. Sea ice-off, lake ice-off, and snow-off parameters were significantly correlated, with stronger correlations during the snow-off and ice-off season compared to the snow-on and ice-on season. Regionally, the Bering and Chukchi seas show the most pronounced response to warming, with the strongest trends identified toward earlier ice-off and later ice-on. This is consistent with earlier snow-off and lake ice-off and later snow-on and lake ice-on in west and southwest Alaska. In contrast to this, significant clustering between sea ice, lake ice, and snow-on trends in the eastern portion of the North American Arctic shows an earlier return of snow and ice. The marked regional variability in snow and ice phenology across the pan-Arctic highlights the complex relationships between snow and ice, as well as their response to climatic change, and warrants detailed monitoring to understand how different regions of the Arctic are responding to ongoing changes.


2020 ◽  
Vol 14 (5) ◽  
pp. 1519-1536 ◽  
Author(s):  
Mark A. Tschudi ◽  
Walter N. Meier ◽  
J. Scott Stewart

Abstract. A new version of sea ice motion and age products includes several significant upgrades in processing, corrects known issues with the previous version, and updates the time series through 2018, with regular updates planned for the future. First, we provide a history of these NASA products distributed at the National Snow and Ice Data Center. Then we discuss the improvements to the algorithms, provide validation results for the new (Version 4) and older versions, and intercompare the two. While Version 4 algorithm changes were significant, the impact on the products is relatively minor, particularly for more recent years. The changes in Version 4 reduce motion biases by ∼ 0.01 to 0.02 cm s−1 and error standard deviations by ∼ 0.3 cm s−1. Overall, ice speed increased in Version 4 over Version 3 by 0.5 to 2.0 cm s−1 over most of the time series. Version 4 shows a higher positive trend for the Arctic of 0.21 cm s−1 per decade compared to 0.13 cm s−1 per decade for Version 3. The new version of ice age estimates indicates more older ice than Version 3, especially earlier in the record, but similar trends toward less multiyear ice. Changes in sea ice motion and age derived from the product show a significant shift in the Arctic ice cover, from a pack with a high concentration of older ice to a sea ice cover dominated by first-year ice, which is more susceptible to summer melt. We also observe an increase in the speed of the ice over the time series ≥ 30 years, which has been shown in other studies and is anticipated with the annual decrease in sea ice extent.


2021 ◽  
Vol 28 (5) ◽  
Author(s):  
D. D. Zavyalov ◽  
T. A. Solomakha ◽  
◽  

Purpose. The work is aimed at assessing the influence of choice of the parameterization scheme of the snow and ice radiation features upon reproduction of seasonal evolution of the snow–ice cover thickness and temperature distribution in it in the Taganrog Bay top part. Methods and Results. Thermal seasonal dynamics of the snow–ice cover thickness in the northeastern part of the Taganrog Bay was studied using a non-stationary thermodynamic model of sea ice. The model reproduces formation of ice and accumulation of snow on its surface, spatial-temporal change in their thermophysical characteristics, melting of the snow–ice cover, vertical distribution of temperature, and solar radiation absorbed in its thickness at a preset timed data on the meteorological parameters. In the numerical solution of the heat conductivity equation for snow and ice including a radiation source, a computational grid permitting to maintain spatial resolution of the temperature profiles in the snow–ice cover during its melting and growth was applied. Two variants of parameterization of solar radiation transfer in the sea ice were considered. The first version assumed exponential decay of radiation with the constant transmittance and extinction coefficients. In the second one, a two-layer scheme of the solar radiation penetration into ice was used; it simulated the near-surface transition layer. Attenuation of intensity of solar radiation in the snow thickness was described by the Bouguer–Lambert law with the extinction coefficient both as independent of the snow thermophysical characteristics and as represented by the function of its density. The numerical experiments with the purpose to reproduce seasonal evolution of the snow–ice cover thickness and its vertical temperature profile in the Taganrog Bay top part were performed for the winter season, 2016/17. Comparative analysis of the simulation results and the sea ice thickness values taken from the ESIMO ice maps made it possible to choose a combination of the model parameters that provides the best correspondence between the calculated and actual values. Conclusions. It is shown that in reproducing the seasonal changes in the ice cover thickness in the Taganrog Bay top part in winter, 2016/17, the choice of the transmittance and extinction coefficients for white ice represented by the cloudiness functions, on the one hand, and the thickness of the layer with the most intense absorption of short-wave radiation ~ 4 cm, on the other, turned out to be the most justified.


2019 ◽  
Author(s):  
Shiming Xu ◽  
Lu Zhou ◽  
Bin Wang

Abstract. Satellite and airborne remote sensing provide complementary capabilities for the observation of the sea ice cover. However, due to the differences in footprint sizes and noise levels of the measurement techniques, as well as sea ice's variability across scales, it is challenging to carry out inter-comparison or consistency study of these observations. In this study we focus on the remote sensing of sea ice thickness parameters, and carry out: (1) the analysis of variability and its statistical scaling for typical parameters, and (2) the consistency study between airborne and satellite measurements. By using collocating data between Operation IceBridge and CryoSat-2 in the Arctic, we show that there exists consistency between the variability of radar freeboard estimations, although CryoSat-2 has higher noise levels. Specifically, we notice that the noise levels vary among different CryoSat-2 products, and for ESA CryoSat-2 freeboard product the noise levels are at about 14 and 20 cm for first-year and multiyear ice, respectively. On the other hand, for Operation IceBridge and ICESat, it is shown that the variability of snow (or total) freeboard is quantitatively comparable, despite over 5 years' the time difference between the two datasets. Furthermore, by using Operation IceBridge data, we also find wide-spread negative covariance between ice freeboard and snow depth, which only manifest at small spatial scales (40 m for first-year ice and about 80 to 120 m for MYI). This statistical relationship highlights that the snow cover reduces the overall topography of the ice cover. Besides, there is prevalent positive covariability between snow depth and snow freeboard across a wide range of spatial scales. The variability and consistency analysis calls for more process-oriented observations and modeling activities to elucidate key processes governing snow-ice interaction and sea ice variability on various spatial scales. The statistical results can also be utilized in improving both radar and laser altimetry, as well as the validation of sea ice and snow prognostic models.


2021 ◽  
Author(s):  
Alicia A. Dauginis ◽  
Laura C. Brown

Abstract. Arctic snow and ice cover are vital indicators of climate variability and change, yet while the Arctic shows overall warming and dramatic changes in snow and ice cover, the response of these high-latitude regions to recent climatic change varies regionally. Although previous studies have examined changing snow and ice separately, examining phenology changes across multiple components of the cryosphere together is important for understanding how these components, and their response to climate forcing, are interconnected. In this work, we examine recent changes in sea ice, lake ice and snow together at the pan-Arctic scale using the Interactive Multisensor Snow and Ice Mapping System 24 km product from 1997–2019, with a more detailed regional examination from 2004–2019 using the 4 km product. We show overall that for sea ice, trends towards earlier open water (−7.7 d decade−1, p 


1990 ◽  
Vol 112 (1) ◽  
pp. 71-77 ◽  
Author(s):  
A. S. Yigit ◽  
A. G. Ulsoy ◽  
R. A. Scott

A theoretical and computational model to study the dynamics of a radially rotating beam with impact were presented in Part 1. In this paper the experimental results are presented and they are compared with simulations using the momentum balance model described in Part 1. Excellent agreement was found between the experiments and simulation. Sensitivity studies were employed to show that the model is applicable for a fairly wide range of parameter values. Thus, the momentum balance method has been demonstrated to be capable of accurately predicting the dynamics of systems which consist of rigid and elastic links undergoing impact.


Sign in / Sign up

Export Citation Format

Share Document