Human - robot collision detection and identification based on fuzzy and time series modelling

Robotica ◽  
2014 ◽  
Vol 33 (9) ◽  
pp. 1886-1898 ◽  
Author(s):  
Fotios Dimeas ◽  
L. D. Avendaño-Valencia ◽  
Nikos Aspragathos

SUMMARYIn this paper, two methods are proposed and implemented for collision detection between the robot and a human based on fuzzy identification and time series modelling. Both methods include a collision detection system for each joint of the robot that is trained to approximate the external torque. In addition, the proposed methods are able to detect the occurrence of a collision, the link that collided and to some extent the magnitude of the collision without using the explicit model of the robot. Since the speed of the detection is of critical importance for mitigating the danger, attention is paid to recognise a collision as soon as possible. Experimental results conducted with a KUKALWR manipulator using two joints in planar motion, verify the validity on both methods.

2020 ◽  
Vol 143 (4) ◽  
Author(s):  
Tie Zhang ◽  
Peizhong Ge ◽  
Yanbiao Zou ◽  
Yingwu He

Abstract To ensure the human safety in the process of human–robot cooperation, this paper proposes a robot collision detection method without external sensors based on time-series analysis (TSA). In the investigation, first, based on the characteristics of the external torque of the robot, the internal variation of the external torque sequence during the movement of the robot is analyzed. Next, a time-series model of the external torque is constructed, which is used to predict the external torque according to the historical motion information of the robot and generate a dynamic threshold. Then, the detailed process of time-series analysis for collision detection is described. Finally, the real-machine experiment scheme of the proposed real-time collision detection algorithm is designed and is used to perform experiments with a six degrees-of-freedom (6DOF) articulated industrial robot. The results show that the proposed method helps to obtain a detection accuracy of 100%; and that, as compared with the existing collision detection method based on a fixed symmetric threshold, the proposed method based on TSA possesses smaller detection delay and is more feasible in eliminating the sensitivity difference of collision detection in different directions.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 325
Author(s):  
Zhihao Wu ◽  
Baopeng Zhang ◽  
Tianchen Zhou ◽  
Yan Li ◽  
Jianping Fan

In this paper, we developed a practical approach for automatic detection of discrimination actions from social images. Firstly, an image set is established, in which various discrimination actions and relations are manually labeled. To the best of our knowledge, this is the first work to create a dataset for discrimination action recognition and relationship identification. Secondly, a practical approach is developed to achieve automatic detection and identification of discrimination actions and relationships from social images. Thirdly, the task of relationship identification is seamlessly integrated with the task of discrimination action recognition into one single network called the Co-operative Visual Translation Embedding++ network (CVTransE++). We also compared our proposed method with numerous state-of-the-art methods, and our experimental results demonstrated that our proposed methods can significantly outperform state-of-the-art approaches.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3426
Author(s):  
Magdalena Paulina Buras ◽  
Fernando Solano Donado

Harsh pollutants that are illegally disposed in the sewer network may spread beyond the sewer network—e.g., through leakages leading to groundwater reservoirs—and may also impair the correct operation of wastewater treatment plants. Consequently, such pollutants pose serious threats to water bodies, to the natural environment and, therefore, to all life. In this article, we focus on the problem of identifying a wastewater pollutant and localizing its source point in the wastewater network, given a time-series of wastewater measurements collected by sensors positioned across the sewer network. We provide a solution to the problem by solving two linked sub-problems. The first sub-problem concerns the detection and identification of the flowing pollutants in wastewater, i.e., assessing whether a given time-series corresponds to a contamination event and determining what the polluting substance caused it. This problem is solved using random forest classifiers. The second sub-problem relates to the estimation of the distance between the point of measurement and the pollutant source, when considering the outcome of substance identification sub-problem. The XGBoost algorithm is used to predict the distance from the source to the sensor. Both of the models are trained using simulated electrical conductivity and pH measurements of wastewater in sewers of a european city sub-catchment area. Our experiments show that: (a) resulting precision and recall values of the solution to the identification sub-problem can be both as high as 96%, and that (b) the median of the error that is obtained for the estimation of the source location sub-problem can be as low as 6.30 m.


2021 ◽  
Vol 5 (1) ◽  
pp. 17
Author(s):  
Miguel Ángel Ruiz Reina

In this research, a new uncertainty method has been developed and applied to forecasting the hotel accommodation market. The simulation and training of Time Series data are from January 2001 to December 2018 in the Spanish case. The Log-log BeTSUF method estimated by GMM-HAC-Newey-West is considered as a contribution for measuring uncertainty vs. other prognostic models in the literature. The results of our model present better indicators of the RMSE and Ratio Theil’s for the predictive evaluation period of twelve months. Furthermore, the straightforward interpretation of the model and the high descriptive capacity of the model allow economic agents to make efficient decisions.


2019 ◽  
Vol 147 ◽  
Author(s):  
C. W. Tian ◽  
H. Wang ◽  
X. M. Luo

AbstractSeasonal autoregressive-integrated moving average (SARIMA) has been widely used to model and forecast incidence of infectious diseases in time-series analysis. This study aimed to model and forecast monthly cases of hand, foot and mouth disease (HFMD) in China. Monthly incidence HFMD cases in China from May 2008 to August 2018 were analysed with the SARIMA model. A seasonal variation of HFMD incidence was found from May 2008 to August 2018 in China, with a predominant peak from April to July and a trough from January to March. In addition, the annual peak occurred periodically with a large annual peak followed by a relatively small annual peak. A SARIMA model of SARIMA (1, 1, 2) (0, 1, 1)12 was identified, and the mean error rate and determination coefficient were 16.86% and 94.27%, respectively. There was an annual periodicity and seasonal variation of HFMD incidence in China, which could be predicted well by a SARIMA (1, 1, 2) (0, 1, 1)12 model.


Author(s):  
Shikhar P. Acharya ◽  
Ivan G. Guardiola

Radio Frequency (RF) devices produce some amount of Unintended Electromagnetic Emissions (UEEs). UEEs are generally unique to a device and can be used as a signature for the purpose of detection and identification. The problem with UEEs is that they are very low in power and are often buried deep inside the noise band. The research herein provides the application of Support Vector Machine (SVM) for detection and identification of RF devices using their UEEs. Experimental Results shows that SVM can detect RF devices within the noise band, and can also identify RF devices using their UEEs.


2006 ◽  
Vol 06 (01) ◽  
pp. L7-L15
Author(s):  
ALEXANDROS LEONTITSIS

The paper introduces a method for estimation and reduction of calendar effects from time series, which their fluctuations are governed by a nonlinear dynamical system and additive normal noise. Calendar effects can be considered deviations of the distribution(s) of particular group(s) of observations that have a common characteristic related to the calendar. The concept of this method is the following: since the calendar effects are not related to the dynamics of the time series, the accurate estimation and reduction will result a time series with a smaller amount of noise level (i.e. more accurate dynamics). The main tool of this method is the correlation integral, due to its inherit capability of modeling both the dynamics and the additive normal noise. Experimental results are presented on the Nasdaq Cmp. index.


2014 ◽  
Vol 644-650 ◽  
pp. 4023-4026
Author(s):  
Yang Ju ◽  
Xin Yong Wang

The vector time series model for simulating the underwater target radiated-noise is developed in this paper. Experimental results show that the true value lying outside the confidence interval would be a small probability event.


Sign in / Sign up

Export Citation Format

Share Document