Immune-inspired search strategies for robot swarms

Robotica ◽  
2016 ◽  
Vol 34 (8) ◽  
pp. 1791-1810 ◽  
Author(s):  
G. M. Fricke ◽  
J. P. Hecker ◽  
J. L. Cannon ◽  
M. E. Moses

SUMMARYDetection of targets distributed randomly in space is a task common to both robotic and biological systems. Lévy search has previously been used to characterize T cell search in the immune system. We use a robot swarm to evaluate the effectiveness of a Lévy search strategy and map the relationship between search parameters and target configurations. We show that the fractal dimension of the Lévy search which optimizes search efficiency depends strongly on the distribution of targets but only weakly on the number of agents involved in search. Lévy search can therefore be tuned to the target configuration while also being scalable. Implementing search behaviors observed in T cells in a robot swarm provides an effective, adaptable, and scalable swarm robotic search strategy. Additionally, the adaptability and scalability of Lévy search may explain why Lévy-like movement has been observed in T cells in multiple immunological contexts.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Josephine F. Reijneveld ◽  
Mira Holzheimer ◽  
David C. Young ◽  
Kattya Lopez ◽  
Sara Suliman ◽  
...  

AbstractThe cell wall of Mycobacterium tuberculosis is composed of diverse glycolipids which potentially interact with the human immune system. To overcome difficulties in obtaining pure compounds from bacterial extracts, we recently synthesized three forms of mycobacterial diacyltrehalose (DAT) that differ in their fatty acid composition, DAT1, DAT2, and DAT3. To study the potential recognition of DATs by human T cells, we treated the lipid-binding antigen presenting molecule CD1b with synthetic DATs and looked for T cells that bound the complex. DAT1- and DAT2-treated CD1b tetramers were recognized by T cells, but DAT3-treated CD1b tetramers were not. A T cell line derived using CD1b-DAT2 tetramers showed that there is no cross-reactivity between DATs in an IFN-γ release assay, suggesting that the chemical structure of the fatty acid at the 3-position determines recognition by T cells. In contrast with the lack of recognition of DAT3 by human T cells, DAT3, but not DAT1 or DAT2, activates Mincle. Thus, we show that the mycobacterial lipid DAT can be both an antigen for T cells and an agonist for the innate Mincle receptor, and that small chemical differences determine recognition by different parts of the immune system.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 813
Author(s):  
Norwin Kubick ◽  
Pavel Klimovich ◽  
Patrick Henckell Flournoy ◽  
Irmina Bieńkowska ◽  
Marzena Łazarczyk ◽  
...  

Understanding the evolution of interleukins and interleukin receptors is essential to control the function of CD4+ T cells in various pathologies. Numerous aspects of CD4+ T cells’ presence are controlled by interleukins including differentiation, proliferation, and plasticity. CD4+ T cells have emerged during the divergence of jawed vertebrates. However, little is known about the evolution of interleukins and their origin. We traced the evolution of interleukins and their receptors from Placozoa to primates. We performed phylogenetic analysis, ancestral reconstruction, HH search, and positive selection analysis. Our results indicated that various interleukins' emergence predated CD4+ T cells divergence. IL14 was the most ancient interleukin with homologs in fungi. Invertebrates also expressed various interleukins such as IL41 and IL16. Several interleukin receptors also appeared before CD4+ T cells divergence. Interestingly IL17RA and IL17RD, which are known to play a fundamental role in Th17 CD4+ T cells first appeared in mollusks. Furthermore, our investigations showed that there is not any single gene family that could be the parent group of interleukins. We postulate that several groups have diverged from older existing cytokines such as IL4 from TGFβ, IL10 from IFN, and IL28 from BCAM. Interleukin receptors were less divergent than interleukins. We found that IL1R, IL7R might have diverged from a common invertebrate protein that contained TIR domains, conversely, IL2R, IL4R and IL6R might have emerged from a common invertebrate ancestor that possessed a fibronectin domain. IL8R seems to be a GPCR that belongs to the rhodopsin-like family and it has diverged from the Somatostatin group. Interestingly, several interleukins that are known to perform a critical function for CD4+ T cells such as IL6, IL17, and IL1B have gained new functions and evolved under positive selection. Overall evolution of interleukin receptors was not under significant positive selection. Interestingly, eight interleukin families appeared in lampreys, however, only two of them (IL17B, IL17E) evolved under positive selection. This observation indicates that although lampreys have a unique adaptive immune system that lacks CD4+ T cells, they could be utilizing interleukins in homologous mode to that of the vertebrates' immune system. Overall our study highlights the evolutionary heterogeneity within the interleukins and their receptor superfamilies and thus does not support the theory that interleukins evolved solely in jawed vertebrates to support T cell function. Conversely, some of the members are likely to play conserved functions in the innate immune system.


Author(s):  
Margherita Amadi ◽  
Silvia Visentin ◽  
Francesca Tosato ◽  
Paola Fogar ◽  
Giulia Giacomini ◽  
...  

Abstract Objectives Preterm premature rupture of membranes (pPROM) causes preterm delivery, and increases maternal T-cell response against the fetus. Fetal inflammatory response prompts maturation of the newborn’s immunocompetent cells, and could be associated with unfavorable neonatal outcome. The aims were to examine the effects of pPROM (Mercer BM. Preterm premature rupture of the membranes: current approaches to evaluation and management. Obstet Gynecol Clin N Am 2005;32:411) on the newborn’s and mother’s immune system and (Test G, Levy A, Wiznitzer A, Mazor M, Holcberg G, Zlotnik A, et al. Factors affecting the latency period in patients with preterm premature rupture of membranes (pPROM). Arch Gynecol Obstet 2011;283:707–10) to assess the predictive value of immune system changes in neonatal morbidity. Methods Mother-newborn pairs (18 mothers and 23 newborns) who experienced pPROM and controls (11 mothers and 14 newborns), were enrolled. Maternal and neonatal whole blood samples underwent flow cytometry to measure lymphocyte subpopulations. Results pPROM-newborns had fewer naïve CD4 T-cells, and more memory CD4 T-cells than control newborns. The effect was the same for increasing pPROM latency times before delivery. Gestational age and birth weight influenced maturation of the newborns’ lymphocyte subpopulations and white blood cells, notably cytotoxic T-cells, regulatory T-cells, T-helper cells (absolute count), and CD4/CD8 ratio. Among morbidities, fewer naïve CD8 T-cells were found in bronchopulmonary dysplasia (BPD) (p=0.0009), and more T-helper cells in early onset sepsis (p=0.04). Conclusions pPROM prompts maturation of the newborn’s T-cell immune system secondary to antigenic stimulation, which correlates with pPROM latency. Maternal immunity to inflammatory conditions is associated with a decrease in non-major histocompatibility complex (MHC)-restricted cytotoxic cells.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A763-A763
Author(s):  
Remko Schotte ◽  
Julien Villaudy ◽  
Martijn Kedde ◽  
Wouter Pos ◽  
Daniel Go ◽  
...  

BackgroundAdaptive immunity to cancer cells forms a crucial part of cancer immunotherapy. Recently, the importance of tumor B-cell signatures were shown to correlate with melanoma survival. We investigated whether tumor-targeting antibodies could be isolated from a patient that cured (now 13 years tumor-free) metastatic melanoma following adoptive transfer of ex vivo expanded autologous T cells.MethodsPatient‘s peripheral blood B cells were isolated and tested for the presence of tumor-reactive B cells using AIMM’s immmortalisation technology. Antibody AT1412 was identified by virtue of its differential binding to melanoma cells as compared to healthy melanocytes. AT1412 binds the tetraspanin CD9, a broadly expressed protein involved in multiple cellular activities in cancer and induces ADCC and ADCP by effector cells.ResultsSpontaneous immune rejection of tumors was observed in human immune system (HIS) mouse models implanted with CD9 genetically-disrupted A375 melanoma (A375-CD9KO) tumor cells, while A375wt cells were not cleared. Most notably, no tumor rejection of A375-CD9KO tumors was observed in NSG mice, indicating that blockade of CD9 makes tumor cells susceptible to immune rejection.CD9 has been described to regulate integrin signaling, e.g. LFA-1, VLA-4, VCAM-1 and ICAM-1. AT1412 was shown to modulate CD9 function by enhancing adhesion and transmigration of T cells to endothelial (HUVEC) cells. AT1412 was most potently enhancing transendothelial T-cell migration, in contrast to a high affinity version of AT1412 or other high affinity anti-CD9 reference antibodies (e.g. ALB6). Enhanced immune cell infiltration is also observed in immunodeficient mice harbouring a human immune system (HIS). AT1412 strongly enhanced CD8 T-cell and macrophage infiltration resulting in tumor rejection (A375 melanoma). PD-1 checkpoint blockade is further sustaining this effect. In a second melanoma model carrying a PD-1 resistant and highly aggressive tumor (SK-MEL5) AT1412 together with nivolumab was inducing full tumor rejection, while either one of the antibodies alone did not.ConclusionsThe safety of AT1412 has been assessed in preclinical development and is well tolerated up to 10 mg/kg (highest dose tested) by non human primates. AT1412 demonstrated a half-life of 8.5 days, supporting 2–3 weekly administration in humans. Besides transient thrombocytopenia no other pathological deviations were observed. No effect on coagulation parameters, bruising or bleeding were observed macro- or microscopically. The thrombocytopenia is reversible, and its recovery accelerated in those animals developing anti-drug antibodies. First in Human clinical study is planned to start early 2021.Ethics ApprovalStudy protocols were approved by the Medical Ethical Committee of the Leiden University Medical Center (Leiden, Netherlands).ConsentBlood was obtained after written informed consent by the patient.


2003 ◽  
Vol 198 (11) ◽  
pp. 1753-1757 ◽  
Author(s):  
Madhav V. Dhodapkar ◽  
Joseph Krasovsky ◽  
Keren Osman ◽  
Matthew D. Geller

Most approaches targeting the immune system against tumors have focused on patients with established tumors. However, whether the immune system can recognize preneoplastic stages of human cancer is not known. Here we show that patients with preneoplastic gammopathy mount a vigorous T cell response to autologous premalignant cells. This preneoplasia-specific CD4+ and CD8+ T cell response is detected in freshly isolated T cells from the BM. T cells from myeloma marrow lack this tumor-specific rapid effector function. These data provide direct evidence for tumor specific immune recognition in human preneoplasia and suggest a possible role for the immune system in influencing the early growth of transformed cells, long before the development of clinical cancer.


2020 ◽  
Author(s):  
Luca Pangrazzi ◽  
Erin Naismith ◽  
Carina Miggitsch ◽  
Jose’ Antonio Carmona Arana ◽  
Michael Keller ◽  
...  

Abstract Background. Obesity has been associated with chronic inflammation and oxidative stress. Both conditions play a determinant role in the pathogenesis of age-related diseases, such as immunosenescence. Adipose tissue can modulate the function of the immune system with the secretion of molecules influencing the phenotype of immune cells. The importance of the bone marrow (BM) in the maintenance of antigen-experienced adaptive immune cells has been documented in mice. Recently, some groups have investigated the survival of effector/memory T cells in the human BM. Despite this, whether high body mass index (BMI) may affect immune cells in the BM and the production of molecules supporting the maintenance of these cells it is unknown.Methods. Using flow cytometry, the frequency and the phenotype of immune cell populations were measured in paired BM and PB samples obtained from persons with different BMI. Furthermore, the expression of BM cytokines was assessed. The influence of cytomegalovirus (CMV) on T cell subsets was additionally considered, dividing the donors into the CMV- and CMV+ groups.Results. Our study suggests that increased BMI may affect both the maintenance and the phenotype of adaptive immune cells in the BM. While the BM levels of IL-15 and IL-6, supporting the survival of highly differentiated T cells, and oxygen radicals increased in overweight persons, the production of IFNγ and TNF by CD8+ T cells was reduced. In addition, the frequency of B cells and CD4+ T cells positively correlated with BMI in the BM of CMV- persons. Finally, the frequency of several T cell subsets, and the expression of senescence/exhaustion markers within these subpopulations, were affected by BMI. In particular, the levels of bona fide memory T cells may be reduced in overweight persons.Conclusion. Our work suggests that, in addition to aging and CMV, obesity may represent an additional risk factor for immunosenescence in adaptive immune cells. Metabolic interventions may help in improving the fitness of the immune system in the elderly.


2021 ◽  
Author(s):  
Anna H.E. Roukens ◽  
Marion König ◽  
Tim Dalebout ◽  
Tamar Tak ◽  
Shohreh Azimi ◽  
...  

AbstractThe immune system plays a major role in Coronavirus Disease 2019 (COVID-19) pathogenesis, viral clearance and protection against re-infection. Immune cell dynamics during COVID-19 have been extensively documented in peripheral blood, but remain elusive in the respiratory tract. We performed minimally-invasive nasal curettage and mass cytometry to characterize nasal immune cells of COVID-19 patients during and 5-6 weeks after hospitalization. Contrary to observations in blood, no general T cell depletion at the nasal mucosa could be detected. Instead, we observed increased numbers of nasal granulocytes, monocytes, CD11c+ NK cells and exhausted CD4+ T effector memory cells during acute COVID-19 compared to age-matched healthy controls. These pro-inflammatory responses were found associated with viral load, while neutrophils also negatively correlated with oxygen saturation levels. Cell numbers mostly normalized following convalescence, except for persisting CD127+ granulocytes and activated T cells, including CD38+ CD8+ tissue-resident memory T cells. Moreover, we identified SARS-CoV-2 specific CD8+ T cells in the nasal mucosa in convalescent patients. Thus, COVID-19 has both transient and long-term effects on the immune system in the upper airway.


2007 ◽  
Vol 81 (14) ◽  
pp. 7647-7661 ◽  
Author(s):  
Anthony B. Nesburn ◽  
Ilham Bettahi ◽  
Gargi Dasgupta ◽  
Alami Aziz Chentoufi ◽  
Xiuli Zhang ◽  
...  

ABSTRACT We studied the phenotype and distribution of “naturally” occurring CD4+ CD25+ T regulatory cells (CD4+ CD25+ nTreg cells) resident in rabbit conjunctiva, the main T-cell inductive site of the ocular mucosal immune system, and we investigated their suppressive capacities using herpes simplex virus type 1 (HSV-1)-specific effector T (Teff) cells induced during ocular infection. The expression of CD4, CD25, CTLA4, GITR, and Foxp3 was examined by reverse transcription-PCR, Western blotting, and fluorescence-activated cell sorter analysis in CD45+ pan-leukocytes isolated from conjunctiva, spleen, and peripheral blood monocyte cells (PBMC) of HSV-1-infected and uninfected rabbits. Normal conjunctiva showed a higher frequency of CD4+ CD25(Bright+) T cells than did spleen and PBMC. These cells expressed high levels of Foxp3, GITR, and CTLA4 molecules. CD4+ CD25(Bright+) T cells were localized continuously along the upper and lower palpebral and bulbar conjunctiva, throughout the epithelium and substantia propria. Conjunctiva-derived CD4+ CD25(Bright+) T cells, but not CD4+ CD25(low) T cells, efficiently suppressed HSV-specific CD4+ and CD8+ Teff cells. The CD4+ CD25(Bright+) T-cell-mediated suppression was effective on both peripheral blood and conjunctiva infiltrating Teff cells and was cell-cell contact dependent but independent of interleukin-10 and transforming growth factor β. Interestingly, during an ocular herpes infection, there was a selective increase in the frequency and suppressive capacity of Foxp3+ CD4+ CD25(Bright+) T cells in conjunctiva but not in the spleen or in peripheral blood. Altogether, these results provide the first evidence that functional Foxp3+ CD4+ CD25(Bright+) Treg cells accumulate in the conjunctiva. It remains to be determined whether conjunctiva CD4+ CD25+ nTreg cells affect the topical/mucosal delivery of subunit vaccines that stimulate the ocular mucosal immune system.


2020 ◽  
Author(s):  
Luca Pangrazzi ◽  
Erin Naismith ◽  
Carina Miggitsch ◽  
Jose’ Antonio Carmona Arana ◽  
Michael Keller ◽  
...  

Abstract Background. Obesity has been associated with chronic inflammation and oxidative stress. Both conditions play a determinant role in the pathogenesis of age-related diseases, such as immunosenescence. Adipose tissue can modulate the function of the immune system with the secretion of molecules influencing the phenotype of immune cells. Recently, the importance of the bone marrow (BM) in the maintenance of antigen-experienced adaptive immune cells has been documented. Despite this, whether high body mass index (BMI) may affect immune cells in the BM and the production of molecules supporting the maintenance of these cells it is unknown. Methods. Using flow cytometry, the frequency and the phenotype of immune cell populations were measured in paired BM and PB samples obtained from persons with different BMI. Furthermore, the expression of BM cytokines was assessed. The influence of cytomegalovirus (CMV) on T cell subsets was additionally considered, dividing the donors into the CMV - and CMV + groups. Results. Our study suggests that increased BMI may affect both the maintenance and the phenotype of adaptive immune cells in the BM. While the BM levels of IL-15 and IL-6, supporting the survival of highly differentiated T cells, and oxygen radicals increased in overweight persons, the production of IFNγ and TNF by CD8 + T cells was reduced. In addition, the frequency of B cells and CD4 + T cells positively correlated with BMI in the BM of CMV - persons. Finally, the frequency of several T cell subsets, and the expression of senescence/exhaustion markers within these subpopulations, were affected by BMI. In particular, the levels of bona fide memory T cells may be reduced in overweight persons. Conclusion. Our work suggests that obesity may represent an independent risk factor supporting immunosenescence, in addition to aging and CMV. Metabolic interventions may help in improving the fitness of the immune system in the elderly.


1992 ◽  
Vol 2 (3) ◽  
pp. 207-213 ◽  
Author(s):  
Louise A. Rollins-Smith ◽  
Patrick J. Blair ◽  
A. Tray Davis

Metamorphosis in amphibians presents a unique problem for the developing immune system. Because tadpoles are free-living, they need an immune system to protect against potential pathogens. However, at metamorphosis, they acquire a variety of new adultspecific molecules to which the tadpole immune system must become tolerant. We hypothesized thatXenopus laevistadpoles may avoid potentially destructive antiself responses by largely discarding the larval immune system at metamorphosis and acquiring a new one. By implanting triploid (3N) thymuses into diploid (2N) hosts, we examined the influx and expansion of host T-cell precursors in the donor thymus of normally metamorphosing and metamorphosis-inhibited frogs. We observed that donor thymocytes are replaced by host-derived cells during metamorphosis, but inhibition of metamorphosis does not prevent this exchange of cells. The implanted thymuses export T cells to the spleen. This donor-derived pool of cells declines after metamorphosis in normally developing frogs but is retained to a greater extent if metamorphosis is inhibited. These studies confirm previous observations of a metamorphosis-associated wave of expansion of T cells and demonstrate that it is not dependent on the relatively high concentrations of thyroid hormones required for metamorphosis. Although some larval T cells persist through metamorphosis, others may be destroyed or the larval population is significantly diluted by the expanding adult population.


Sign in / Sign up

Export Citation Format

Share Document