Methods of Reducing the Transonic Drag of Swept - Back Wings at Zero Lift

1957 ◽  
Vol 61 (553) ◽  
pp. 37-42 ◽  
Author(s):  
D. Küchemann

The purpose of this paper is to review briefly some means of reducing the normal-pressure drag at transonic speeds of wings and wing-body combinations without lift. By transonic speeds is meant here not only the range of main stream Mach numbers around unity but, more generally, that speed range where a transonic type of flow around the body may exist. Thick non-lifting bodies as are considered here cause a displacement flow and it may be recalled that at least three different types of flow are involved: a subsonic, a transonic, and a supersonic type of flow, all of which are here assumed to have one attachment line along the leading edge and one separation line along the trailing edge. This excludes types of flow where separations occur elsewhere, such as shock-induced separations along some line within the wing chord.

1953 ◽  
Vol 4 (3) ◽  
pp. 287-314 ◽  
Author(s):  
W. Chester

SummaryThe supersonic flow past a combination of a thin wing and a slender body of revolution is discussed by means of the linearised equation of motion. The exact equation is first established so that the linearised solution can be fed back and the order of the error terms calculated. The theory holds under quite general conditions which should be realised in practice.The wing-body combination considered consists of a wing symmetrically situated on a pointed body of revolution and satisfying the following fairly general conditions. The wing leading edge is supersonic at the root, and the body is approximately cylindrical downstream of the leading edge. The body radius is of an order larger than the wing thickness, but is small compared with the chord or span of the wing.It is found that if the wing and body are at the same incidence, and the aspect ratio of the wing is greater than 2 (M2-1)-½, where M is the main stream Mach number, the lift is equivalent to that of the complete wing when isolated. If the wing only is at incidence then the lift is equivalent to that of the part of the wing lying outside the body.The presence of the body has a more significant effect on the drag. If, for example, the body is an infinite cylinder of radius a, and the wing is rectangular with aspect ratio greater than 2(M2-1)-½, then the drag of the wing is decreased by a factor (1-2a/b), where 2b is the span of the wing.When these conditions do not hold the results are not quite so simple but are by no means complicated.


1998 ◽  
Vol 9 (5) ◽  
pp. 463-483 ◽  
Author(s):  
E. O. TUCK ◽  
J.-M. VANDEN-BROECK

A semi-infinite body, modelling the leading edge of a cutting tool or submerged hydrofoil, lies beneath a free surface in a uniform stream of infinitely-deep inviscid incompressible fluid flowing steadily under gravity. The body has horizontal upper and lower surfaces. The oncoming flow is partly diverted over, and partly under the body. The flow in that portion that travels over the body can be supercritical or subcritical. When it is supercritical it approaches a stream of some (to be determined) speed in a channel of some (to be determined) depth. When it is subcritical, there is also a train of waves on that stream, whose amplitude is also to be determined. Semi-analytic high-speed and low-speed solutions are obtained, and a numerical solution for finite speeds. There is a ‘forbidden’ intermediate speed range, within which steady flow may not be possible.


Author(s):  
A.M. Satarkulova

The assessment and dynamic control over students’ status is a very important task. It allows timely detection of prenosological status prior to pathology and health maintenance in students. The objective of the paper is to assess the adaptive abilities of the body, to analyze changes in heart rate variability indicators in students with various types of autonomic regulation, to identify prenosological status and precursory pathological symptoms. Materials and Methods. The study enrolled 302 students from India, aged 21.54±1.43. Programming complex «Psychophysiologist» was used to register the main HRV parameters within 5 minutes. Health status was evaluated according to the index of functional changes and the scale of functional states. Results. N.I. Shlyk (2009) distinguished two groups of students with different types of autonomic regulation: type 1 (53 %) with moderate and type 2 (5 %) with marked characteristics of central regulation profile, type 3 (35 %) with moderate and type 4 (7 %) with marked characteristics of autonomous regulation profile. Main parameters of HRV and adaptation potential were defined for each student.All the parameters characterized functional and health status. Conclusions. It was shown that 82 % of trial subjects (type 1), 53 % (type 2), 94 % (type 3) and 95 % (type 4) demonstrated satisfactory adaptation and their physiological processes were at an optimal level. 18 % of students (type 1) demonstrated reduced adaptive abilities of the body. Moreover, they were under moderate stress. 47 % of subjects (type 2) were also under a significant stress, which was proven by excessively high SI, low SDNN and TP, and an increased index of functional changes. 5 % of students (type 4) revealed dysfunctional characteristics in the heart rhythm, peculiar to pathology. Keywords: foreign students, heart rate variability, types of autonomic regulation, adaptation potential, functional status. Оценка состояния студентов и динамический контроль за ним является важной задачей, поскольку позволяет своевременно выявлять у студентов донозологические состояния, предшествующие патологии, и способствовать сохранению здоровья. Цель. Оценка адаптивных возможностей организма, анализ изменений показателей вариабельности сердечного ритма у студентов с различными типами вегетативной регуляции, выявление донозологических состояний и ранних признаков патологии. Материалы и методы. В исследовании участвовало 302 студента в возрасте 21,54+1,43 года из Индии. Регистрировались основные параметры ВСР в течение 5 мин с использованием программно-аппаратного комплекса «Психофизиолог». Состояние и уровень здоровья оценивались по индексу функциональных изменений и шкале функциональных состояний. Результаты. По способу, предложенному Н.И. Шлык, выделены группы студентов с различными типами вегетативной регуляции: I (53 %) и II типы (5 %) – с умеренным и выраженным преобладанием центрального контура регуляции соответственно, III (35 %) и IV типы (7 %) – с умеренным и выраженным преобладанием автономного контура регуляции соответственно. У каждого из студентов определены основные параметры ВСР и адаптационного потенциала, характеризующие функциональное состояние и уровень здоровья. Выводы. Показано, что для 82 % обследуемых с I типом, 53 % со II типом, 94 % c III типом и 95 % с IV типом регуляции характерно состояние удовлетворительной адаптации, физиологические процессы сохраняются на оптимальном уровне. В группе студентов I типа у 18 % студентов адаптивные возможности организма снижены, выявлено состояние умеренного напряжения. У 47 % обследуемых II типа также зафиксировано состояние резко выраженного напряжения, индикатором которого является чрезмерно высокое значение SI, низкие величины SDNN и ТP, повышенное значение индекса функциональных изменений. В группе студентов с IV типом у 5 % учащихсяв регуляции ритма сердца выявлены дисфункциональные признаки, характерные для патологии. Ключевые слова: иностранные студенты, вариабельность сердечного ритма, типы вегетативной регуляции, адаптационный потенциал, функциональное состояние.


2021 ◽  
pp. 175815592098715
Author(s):  
José Carrillo-Ortiz ◽  
Santi Guallar ◽  
Jessica Martínez-Vargas ◽  
Javier Quesada

The methods used to preserve bird skins in museums have a potentially crucial impact on the feasibility and use of these specimens as a source of biological knowledge, although this subject is rarely broached. Study skins of birds are usually prepared with folded wings and straight legs to facilitate storage in the collection; yet, this method can hamper the measurement and examination of certain important features such as wing-feather moult. To make consultation easier for ornithologists, alternative preparation methods such as the splitting of wings and tarsi from the rest of the animal have been proposed by curators. Our aim was to study whether or not preparing bird specimens with spread limbs makes consultation simpler. First, we used two different methods to prepare two specimens each of two common European passerine species: (1) ‘traditional’ (folded wings and straight tarsi) and (2) ‘spread’ (limbs spread on one side of the body). Then, we asked 22 experienced ornithologists to identify moult limits and take three biometric measurements (wing chord, length of the third primary feather and tarsus length) from all four specimens. Subsequently, we asked which preparation method they preferred for obtaining data. The ‘spread’ preparation was preferred for moult, third primary feather length and tarsus length, whilst the ‘traditional’ preparation was preferred for wing chord. Data obtained from the folded and spread preparations were very highly repeatable within each method but only moderately to highly repeatable between methods. One of the handicaps with the ‘spread’ preparation is the increase in storage space required, a factor that should be taken into account before it is employed. Nevertheless, this specimen preparation technique can greatly facilitate consultation and therefore improve the scientific value of ornithological collections.


2015 ◽  
Vol 767 ◽  
pp. 430-448 ◽  
Author(s):  
Daniel B. Quinn ◽  
George V. Lauder ◽  
Alexander J. Smits

AbstractExperimental gradient-based optimization is used to maximize the propulsive efficiency of a heaving and pitching flexible panel. Optimum and near-optimum conditions are studied via direct force measurements and particle image velocimetry (PIV). The net thrust and power scale predictably with the frequency and amplitude of the leading edge, but the efficiency shows a complex multimodal response. Optimum pitch and heave motions are found to produce nearly twice the efficiencies of optimum heave-only motions. Efficiency is globally optimized when (i) the Strouhal number is within an optimal range that varies weakly with amplitude and boundary conditions; (ii) the panel is actuated at a resonant frequency of the fluid–panel system; (iii) heave amplitude is tuned such that trailing-edge amplitude is maximized while the flow along the body remains attached; and (iv) the maximum pitch angle and phase lag are chosen so that the effective angle of attack is minimized. The multi-dimensionality and multi-modality of the efficiency response demonstrate that experimental optimization is well-suited for the design of flexible underwater propulsors.


Author(s):  
Keyong Cheng ◽  
Xiulan Huai ◽  
Jun Cai ◽  
Zhixiong Guo

In the present study, numerical simulation is carried out for impingement/effusion cooling on the leading edge of a turbine blade similar to an experimental model tested previously. The k-ε turbulence model is used, and simulation parameters are set in accordance with the experimental conditions, including temperature ratio, blowing ratio, and Reynolds number of the main stream. The accuracy and reliability of the simulation is verified by the experimental data, and the influence of various factors on fluid flow and heat transfer is analyzed in detail. The results indicate that the blowing ratio is one critical factor which affects the cooling effectiveness. The greater the blowing ratio is, the higher the cooling effectiveness is. In addition, a staggered-holes arrangement is numerically studied and compared with a line-holes arrangement. The results show that the staggered-holes arrangement has a lower temperature on the outer surface of the leading edge and has improved the cooling effectiveness.


2021 ◽  
Vol 51 (1-2) ◽  
pp. 5-14
Author(s):  
Anna-Klara Bojö

The Bodies’ Poetry: Eva Runefelt, Eva Ström and Swedish Poetry in the Late 1970’s In the mid 1970’s a new type of poetry, associated with the body, emerged in Sweden. Especially young women writers appeared to take Swedish poetry in new aesthetic directions, exploring questions regarding experience and language. This article focuses on two prominent writers, Eva Runefelt and Eva Ström, and discusses how their different types of poetry can be said to be a bodies’ poetry, and how it was discussed in contemporary literary critique. It also reflects on why this strand of poetry has been granted such a peripheral place in literary history.


2021 ◽  
Vol 143 (4) ◽  
Author(s):  
Teng Cao ◽  
Tadashi Kanzaka ◽  
Liping Xu ◽  
Tobias Brandvik

Abstract In this paper, an unsteady tip leakage flow phenomenon is identified and investigated in a centrifugal compressor with a vaneless diffuser at near-stall conditions. This phenomenon is associated with the inception of a rotating instability in the compressor. The study is based on numerical simulations that are supported by experimental measurements. The study confirms that the unstable flow is governed by a Kelvin–Helmholtz type instability of the shear layer formed between the main-stream flow and the tip leakage flow. The shear layer instability induces large-scale vortex roll-up and forms vortex tubes, which propagate circumferentially, resulting in measured pressure fluctuations with short wavelength and high amplitude which rotate at about half of the blade speed. The 3D vortex tube is also found to interact with the main blade leading edge, causing the reduction of the blade loading identified in the experiment. The paper also reveals that the downstream volute imposes a once-per-rev circumferential nonuniform back pressure at the impeller exit, inducing circumferential loading variation at the impeller inducer, and causing circumferential variation in the unsteady tip leakage flow.


2018 ◽  
Vol 90 (7) ◽  
pp. 1136-1144 ◽  
Author(s):  
Dimitris Gkiolas ◽  
Demetri Yiasemides ◽  
Demetri Mathioulakis

Purpose The complex flow behavior over an oscillating aerodynamic body, e.g. a helicopter rotor blade, a rotating wind turbine blade or the wing of a maneuvering airplane involves combinations of pitching and plunging motions. As the parameters of the problem (Re, St and phase difference between these two motions) vary, a quasi-steady analysis fails to provide realistic results for the aerodynamic response of the moving body, whereas this study aims to provide reliable experimental data. Design/methodology/approach In the present study, a pitching and plunging mechanism was designed and built in a subsonic closed-circuit wind tunnel as well as a rectangular aluminum wing of a 2:1 aspect-ratio with a NACA64-418 airfoil, used in wind turbine blades. To measure the pressure distribution along the wing chord, a number of fast responding transducers were embedded into the mid span wing surface. Simultaneous pressure measurements were conducted along the wing chord for the Reynolds number of 0.85 × 106 for both steady and unsteady cases (pitching and plunging). A flow visualization technique was used to detect the flow separation line under steady conditions. Findings Elevated pressure fluctuations coincide with the flow separation line having been detected through surface flow visualization and flattened pressure distributions appear downstream of the flow separation line. Closed hysteresis loops of the lift coefficient versus angle of attack were measured for combined pitching and plunging motions. Practical implications The experimental data can be used for improvement of unsteady fluid mechanics problem solvers. Originality/value In the present study, a new installation was built allowing the aerodynamic study of oscillating wings performing pitching and plunging motions with prescribed frequencies and phase lags between the two motions. The experimental data can be used for improvement of computational fluid dynamics codes in case that the examined aerodynamic body is oscillating.


Aksioma ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 57-73
Author(s):  
Nurdin Nurdin ◽  
Ita Sarmita Samad ◽  
Sardia Sardia

Abstract: The theory distinguishes human based on four different personality types such as: sanguine, choleric, melancholic, and phlegmatic. Different types of personality caused by differences in the dominant fluid in the body. These differences will result in terms of behavior, ways of thinking and to get along. The type of this research that is descriptive qualitative which it is describing the logical reasoning based on Hippocrates personality types. The logical reasoning is analyzed through the four types of personality in relation to mathematical problem solving. The Analysis is done based on the logical reasoning indicator/ subindicator and the steps of problem solving stated by Polya. The result shows that there is a reasoning difference on each type of personalities. The difference can be terms of the strenght or the weakness. Sanguine is quicker in understanding problems and communicating results, choleric is more accelerated in work, melancholic is more perfect at work, and  phlegmatic is superior in terms of accuracy. Keywords: Logical reasoning, Hippocrates, sanguine, choleric, melancholic, phlegmatic


Sign in / Sign up

Export Citation Format

Share Document