The Relationship Between Colliery-waste Particle Sizes and Plant Growth

1974 ◽  
Vol 1 (4) ◽  
pp. 281-284 ◽  
Author(s):  
Christopher G. Down

Seed germination and dry-weight production in Lolium perenne were examined in relation to growth on 12-years-old colliery waste separated into seven size-fractions. The size-range was from more than 4,000 μ to less than 125 μ, and the growth period was up to 30 days. Germination percentages after 6 days generally increased with decreasing particle-size, as did dry-weight. Shoot : root ratios also showed an inverse relationship with particle size.After 30 days there was no distinction between dryweights on different particle sizes, except that on the largest fractions it had been found impossible to keep the plants alive. Problems of water-holding capacity are discussed, and the significance of soil particle-size in revegetation work is examined, it being concluded that an admixture of small particles is important for water retention and plant growth.

2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Hyun-Chang Lim ◽  
Kyung-In Ha ◽  
Ji-Youn Hong ◽  
Ji-Young Han ◽  
Seung-Il Shin ◽  
...  

The aim of the present study was to compare bone-collecting capacity of bone harvesting device and minimally irrigated low-speed drilling using three implant systems. One bone harvesting device and three commercially available drill systems were compared using the osteotomies on bovine rib bones. The amount of the collected bone particle and particle size (<500 μm: small, 500–1000 μm: medium, and >1000 μm: large) were measured. Total wet (1.535±0.232 mL) and dry volume (1.147±0.425 mL) of the bone particles from bone harvesting device were significantly greater than three drill systems (wet volume: 1.225±0.187–1.27±0.29 mL and dry volume: 0.688±0.163–0.74±0.311 mL) (P<0.05). In all groups, the amount of large sized particles in wet and dry state was the greatest compared to that of medium and small particles. The dry weight of the bone particles showed the same tendency to volumetric measurement. In conclusion, total bone particles and large sized particles (>1000 μm) were harvested significantly greater by bone harvesting device than minimally irrigated low-speed drilling. The composition of particle size in all harvesting methods was similar to each other.


2021 ◽  
Vol 1 (2) ◽  
pp. 041-048
Author(s):  
Benson Chinweuba Udeh

This study is on the production of quicklime from Ashaka limestone through calcination process. Effects of temperature, particle size and time on quicklime yield were determined. The experiment was carried out at temperatures of 800, 900, 1000, 1100 and 1200 0C, particle sizes of 80mm, 90mm, 100mm, 300mm and 425mm and times of 0.5hr, 1hr, 2hrs, 3hrs and 4hrs. Analyses of the results showed that quicklime was successfully produced from Ashaka limestone through the calcination process. Quadratic model adequately described the relationship between quicklime yield and calcination factors of temperature, particle size and time. Recorded model F-value of 134.35 implies that the model is significant. The predicted R² of 0.9597 is in reasonable agreement with the adjusted R² of 0.9844; the difference is less than the critical value of 0.2. Optimum yield of 73.48% was obtained at optima operating conditions; temperature of 1000 0C, particle size of 90 µm and time of 3 hrs.


2014 ◽  
Vol 941-944 ◽  
pp. 952-955 ◽  
Author(s):  
Dao Yuan Wang ◽  
Deng Hua Yan ◽  
Xin Shan Song ◽  
Hao Wang

Adding biochar to agricultural soil has been suggested as an approach to enhance soil carbon sequestration. Biochar has also been used as a soil amendment to reduce nutrient leaching, reduce soil acidity and improve water holding capacity. Walnut shells and woody material are waste products of orchards that are cheap, carbon-rich and good feedstock for production of biochar. The effectiveness of biochar as an amendment varies considerably as a function of its feedstock, temperature during pyrolysis, the biochar dose to soil, and mechanical composition. Biochar was produced from pyrolysis of walnut shell at 900 °C and soft wood at 600 to 700 °C. We measured the effect of these different parameters in two types of agricultural soil in Jilin and Beijing, China, a silt clay loam and a sandy loam, on the soils’ particle size distribution and water retention characteristics. Biochars with two different doses were applied to each soil type. Soil field capacity and permanent wilting point were measured using a pressure plate extractor for each combination of biochar and soil type. The results show that the effect of biochar amendment on soil water retention characteristics depend primarily on soil particle size distribution and surface characteristics of biochar. High surface area biochar can help raise the water holding capacity of sandy soil.


1983 ◽  
Vol 40 (3) ◽  
pp. 328-336 ◽  
Author(s):  
Uwe Borgmann ◽  
D. M. Whittle

The particle-size-conversion efficiency (log food consumption/production divided by log predator prey size ratio) is shown to be directly related to the relationship between the concentration of persistent contaminants accumulated primarily through the food chain and body size for organisms in pelagic ecosystems. The difference between particle-size-conversion efficiency for biomass and that for the contaminant gives the slope of the relationship between log contaminant concentration and log body size. This provides a useful theoretical framework for analyzing contaminant concentrations in aquatic biota without the need for specifying trophic level but still incorporating the idea of food chain accumulation. Concentrations of PCB, DDT, and mercury were examined in aquatic organisms from Lake Ontario, ranging in size from zooplankton to large salmonids (a 108 -fold range in dry weight). The slope of the double log plot of concentration versus weight varied from 0.20 to 0.22 for PCB and DDT and was approximately equal to 0.13 for mercury. This indicates that mercury is accumulated less efficiently through the food chain than PCB or DDT. After correcting for incomplete uptake and retention of the contaminant, an estimate of particle-size-conversion efficiency for biomass of about 0.26 was obtained, which agrees reasonably well with previous estimates obtained from growth efficiency experiments and analysis of particle-size spectra. These calculations indicate that potential fish production in Lake Ontario is ~ 120-fold lower than zooplankton production (for fish averaging 108-fold larger in body size as compared to zooplankton).Key words: particle-size-conversion efficiency, PCB, DDT, mercury, zooplankton production, fish production


2016 ◽  
Vol 17 (11) ◽  
pp. 2733-2742 ◽  
Author(s):  
Li Liu ◽  
Renhe Zhang ◽  
Zhiyan Zuo

Abstract As important parameters in the land–atmosphere system, both soil moisture (SM) and vegetation play a significant role in land–atmosphere interactions. Using observational data from clay and sand stations over central eastern China, the relationship between leaf area index (LAI) and SM (LAI–SM) in different types of soil was investigated. The results show that the LAI–SM correlation is significantly positive in clay but not significant in sand. The physical causes for the discrepant LAI–SM correlations in different types of soil were explored from the perspectives of evapotranspiration (ET) and soil water retention. In clay stations, increasing LAI is associated with greater soil-water-retention capacity. Although the increasing LAI corresponds to increasing ET, the impact of ET on SM is weak because of the small particle size of soil. Consequently, the LAI–SM relationship in clay is significantly positive. In sand stations, ET is negatively correlated with SM owing to the large soil particle size, resulting in a negative LAI–SM correlation in sand. However, soil water retention is weakened by the increased LAI, which may be an important factor causing the insignificant LAI–SM correlation in sand.


1993 ◽  
Vol 11 (1) ◽  
pp. 31-35
Author(s):  
Stuart L. Warren ◽  
James E. Shelton

Abstract Fraser photinia, ‘Plumosa Compacta Youngstown’ juniper and ‘Hino-Crimson’ azalea were grown in pine bark amended with a factorial combination of five rates (0, 0.9, 1.8, 3.6 and 7.2 kg/m3) (0, 1.5, 3, 6 and 12 lbs/yd3) of olivine, a magnesium ortho silicate containing 27% Mg and four particle sizes of olivine. Calcium carbonate (38% Ca) at 2.4 kg/m3 (4 lbs/yd3) was incorporated into all olivine treatments. A separate treatment utilizing 4.2 kg/m3 (7 lbs/yd3) dolomitic limestone (22% Ca, 11% Mg) was also included to serve as a comparison to dolomitic limestone. In general, Mg concentration in the media increased with increasing olivine rate and decreasing particle size. Media P, K and Ca concentration and pH were not affected by olivine rate or particle size, nor were they significantly different from the treatment containing dolomitic limestone. Foliar Mg increased with increasing olivine rate in all species. Foliar K decreased with increasing olivine rate for ‘Hino-Crimson’ azalea and Fraser photinia. Top dry weight of ‘Plumosa Compacta Youngstown’ juniper was not affected by olivine rate or particle size while top dry weight of ‘Hino-Crimson’ azalea and Fraser photinia increased quadratically with increasing olivine rate, with the maximum occurring at 0.9 kg/m3 (1.5 lbs/yd3) and 1.8 kg/m3 (3.0 lbs/yd3), respectively. These maximum top dry weights were significantly heavier than plants grown with dolomitic limestone.


2021 ◽  
Vol 14 (7) ◽  
pp. 4535-4554
Author(s):  
Gwenaëlle Gremion ◽  
Louis-Philippe Nadeau ◽  
Christiane Dufresne ◽  
Irene R. Schloss ◽  
Philippe Archambault ◽  
...  

Abstract. A simplified model, representing the dynamics of marine organic particles in a given size range experiencing coagulation and fragmentation reactions, is developed. The framework is based on a discrete size spectrum on which reactions act to exchange properties between different particle sizes. The reactions are prescribed according to triplet interactions. Coagulation combines two particle sizes to yield a third one, while fragmentation breaks a given particle size into two (i.e. the inverse of the coagulation reaction). The complete set of reactions is given by all the permutations of two particle sizes associated with a third one. Since, by design, some reactions yield particle sizes that are outside the resolved size range of the spectrum, a closure is developed to take into account this unresolved range and satisfy global constraints such as mass conservation. In order to minimize the number of tracers required to apply this model to an ocean general circulation model, focus is placed on the robustness of the model to the particle size resolution. Thus, numerical experiments were designed to study the dependence of the results on (i) the number of particle size bins used to discretize a given size range (i.e. the resolution) and (ii) the type of discretization (i.e. linear vs. nonlinear). The results demonstrate that in a linearly size-discretized configuration, the model is independent of the resolution. However, important biases are observed in a nonlinear discretization. A first attempt to mitigate the effect of nonlinearity of the size spectrum is then presented and shows significant improvement in reducing the observed biases.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 686b-686 ◽  
Author(s):  
Thomas M. Contrisciano ◽  
E. Jay Holcomb

The objective of this research was to develop a mineral wool based growing medium for the horticultural industry. Two types of hydrophilic mineral wool, clean wool (CW) and unclean wool (UC) were used unamended, as well as both types in combinations with 25, 50, and 75 percent peat moss (PM). A control of 100 percent (PM) was also used. Unamended CW had a low bulk density, excellent water holding capacity, good aeration, but high pH. Once PM was added to CW, bulk density still remained low, water holding capacity and aeration remained good, and the pH dropped to a more suitable level. Unamended UW had a high bulk density, good water holding capacity, poor aeration, and high pH. Once PM was added to UW, bulk density decreased, water holding capacity remained good, aeration increased, and pH decreased to a more optimal level. Impatiens `Violet' and Begonia `Whiskey' were grown in the nine treatments for six and nine weeks respectively. At harvest, plant growth was evaluated by height, diameter, fresh weight, dry weight, and tissue analysis. Plant growth response showed plants grown in unamended CW, UW, and PM were smaller in size and lighter in fresh and dry weights than those in 50 percent wool/50 percent PM. The plants grown in 25 and 75 percent PM were similar to the 50 percent wool/50 percent PM in size and weight.


1991 ◽  
Vol 9 (4) ◽  
pp. 226-227
Author(s):  
Carol E. Leda ◽  
Robert D. Wright

Abstract Boxwood liners, Buxus sempervirens ‘Suffruticosa’, were container-grown for two years in a pine bark/peat moss medium amended with various particle sizes of dolomitic limestone. Adjustment of pH was more effectively accomplished with the finer particles. All treatments resulted in greater plant growth than the untreated control. A surface application of a commercially available pulverized dolomitic limestone was also effective in increasing the pH above the control treatment, and plants grown with the surface applied treatment were as large as any of the incorporated treatments.


1985 ◽  
Vol 105 (1) ◽  
pp. 9-14 ◽  
Author(s):  
D. P. Poppi ◽  
R. E. Hendricksen ◽  
D. J. Minson

SUMMARYIn a study of the effect of animal species on the threshold particle size leaving the rumen, two grasses cut at two stages of growth and one mature legume were separated into leaf and stem fractions and fed to cattle and sheep. Samples of rumen digesta and faeces were used to determine the validity of using a 1·18 mm porosity screen to separate the rumen particles into large and small pools when studying escape of particles from the rumen. Samples of rumen digesta and faeces were collected for the determination of particle size by wet sieving and the calculation of resistance of particles to passage from the rumen relative to small particles retained on a 0·15 mm sieve.Particles < 1·18 mm but > 0·5 mm had a mean relative resistance to passage of 2·0 and 2·6 for cattle and sheep respectively, compared with resistance values of between 10·9 and 31·2 for particles between 1·18 and 2·36 mm. It is suggested that there is no justification for using different threshold particle sizes for sheep and cattle and that a 1·18 mm sieve may be used to divide the rumen contents of both cattle and sheep into two pools of particles with high and low relative resistance to passage from the rumen.


Sign in / Sign up

Export Citation Format

Share Document