Studies of surface and structural heterogeneity of carbon supports and carbon-supported catalysts

Author(s):  
J. Liu ◽  
S. M. Colburn ◽  
R. L. Ornberg ◽  
J. R. Ebner

Activated carbons are generally used as support materials for precious metal catalysts. Properties of carbon that are important to catalyst preparation and application include composition, surface area, microstructure and pore shape and size distribution. Macropores (> 50 nm), mesopores (2-50 nm) and micropores (<2 nm) generally coexist in activated carbons. The accessibility of metal particles dispersed in microporous systems is of predominant importance, especially for large molecules that exhibit slow diffusion transport in narrow pores. It is desirable to have metal particles highly dispersed in readily accessible locations. As part of an on-going program of the characterization of carbonsupported catalysts we report some preliminary observations of the microstructure of carbon supports by a variety of electron microscopy techniquesCommercial carbon supports and carbon-supported Pt catalysts were used in this study. High resolution secondary electron (SE) microscopy, low voltage backscattered electron (LVBE) microscopy and high-angle annular dark-field (HAADF) microscopy techniques were employed to extract surface and structural information.

Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1321
Author(s):  
Mohamed E. Osman ◽  
Vladimir V. Maximov ◽  
Viktor S. Dorokhov ◽  
Viktor M. Mukhin ◽  
Tatiana F. Sheshko ◽  
...  

KCoMoS2 was supported on various carbon support materials to study the support effect on synthesis gas conversion. Next to two activated carbons with high micropore volume, a traditional alumina (γ-Al2O3) support and its carbon coated form (CCA) were studied for comparison. Coating alumina with carbon increases the selectivity to alcohols, but the AC-supported catalysts show even higher alcohol selectivities and yields, especially at higher temperatures where the conversions over the AC-supported catalysts increase more than those over the γ-Al2O3-based catalysts. Increasing acidity leads to decreased CO conversion yield of alcohols. The two activated-carbon-supported catalysts give the highest yield of ethanol at the highest conversion studied, which seems to be due to increased KCoMoS2 stacking and possibly to the presence of micropores and low amount of mesopores.


Author(s):  
M. Jose Yacaman

In the Study of small metal particles the shape is a very Important parameter. Using electron microscopy Ino and Owaga(l) have studied the shape of twinned particles of gold. In that work electron diffraction and contrast (dark field) experiments were used to produce models of a crystal particle. In this work we report a method which can give direct information about the shape of an small metal particle in the amstrong- size range with high resolution. The diffraction pattern of a sample containing small metal particles contains in general several systematic and non- systematic reflections and a two-beam condition can not be used in practice. However a N-beam condition produces a reduced extinction distance. On the other hand if a beam is out of the bragg condition the effective extinction distance is even more reduced.


Author(s):  
J. Liu ◽  
M. Pan ◽  
G. E. Spinnler

Small metal particles have peculiar chemical and physical properties as compared to bulk materials. They are especially important in catalysis since metal particles are common constituents of supported catalysts. The structural characterization of small particles is of primary importance for the understanding of structure-catalytic activity relationships. The shape and size of metal particles larger than approximately 5 nm in diameter can be determined by several imaging techniques. It is difficult, however, to deduce the shape of smaller metal particles. Coherent electron nanodiffraction (CEND) patterns from nano particles contain information about the particle size, shape, structure and defects etc. As part of an on-going program of STEM characterization of supported catalysts we report some preliminary results of CEND study of Ag nano particles, deposited in situ in a UHV STEM instrument, and compare the experimental results with full dynamical simulations in order to extract information about the shape of Ag nano particles.


2001 ◽  
Vol 7 (S2) ◽  
pp. 1112-1113
Author(s):  
Rhonda M. Stroud ◽  
Jeffrey W. Long ◽  
Karen E. Swider-Lyons ◽  
Debra R. Rolison

To address how the chemical and structural heterogeneity of Pt50Ru50 nanoparticles affects methanol oxidation activity, we have employed an arsenal of transmission electron microscopy techniques (conventional bright field-imaging, selected area diffraction, atomic-resolution lattice imaging, electron-energy loss spectroscopy, and energy-dispersive x-ray spectroscopy) to characterize 2.5-nm particles in differing oxidation and hydration states. Our studies demonstrate that electrocatalysts containing a high fraction of Ru-rich hydrous oxide, as apposed to the anhydrous PtRu bimetallic alloy, have as much as 250x higher methanol oxidation activityThe nominally 2.5-nm Pt50Ru50 particles were studied in as-received, reduced and reoxidized forms. The reducing treatment consisted of 2 h at 100 °C in flowing 10% PL/argon mixture. For re-oxidation, the reduced particles were heated for 20 h at 100 °C in an H2O-saturated oxygen atmosphere. The particles were suspended in methanol, and pipetted onto holey-carboncoated Cu grids for TEM studies.


1999 ◽  
Vol 589 ◽  
Author(s):  
Jingyue Liu

AbstractThe use of a high-brightness field emission gun and novel secondary electron detection systems makes it possible to acquire nanometer-resolution surface images of bulk materials, even at low electron beam voltages. The advantages of low-voltage SEM include enhanced surface sensitivity, reduced sample charging on non-conducting materials, and significantly reduced electron range and interaction volume. High-resolution images formed by collecting the backscattered electron signal can give information about the size and spatial distribution of metal nanoparticles in supported catalysts. Low-voltage XEDS can provide compositional information of bulk samples with enhanced surface sensitivity and significantly improved spatial resolution. High-resolution SEM techniques enhance our ability to detect and, subsequently, analyze the composition of nanoparticles in supported metal catalysts. Applications of high-resolution SEM imaging and microanalysis techniques to the study of industrial supported catalysts are discussed.


1997 ◽  
Vol 3 (S2) ◽  
pp. 1223-1224
Author(s):  
J. Liu ◽  
R. L. Ornberg ◽  
J. R. Ebner

Many industrial catalysts have a complex geometric structure to enable reacting gases or fluids to reach as much of the active surface of the catalyst as possible. The catalyzing surface frequently consists of a complex chemical mixture of different phases produced by an evolved chemical process. The active components are often very small particles dispersed on high-surface-area supports. The catalytic properties of this type of catalyst depend on the structure, composition, and morphology of the active species as well as the supports. TEM/STEM and associated techniques have been used extensively to characterize the structure and composition of supported catalysts. Surface morphology of supported catalysts is generally examined by secondary electron imaging, especially at low incident beam energies. It is, however, frequently found that small metal particles are not usually seen in SE images because of the complication of support topography


2004 ◽  
Vol 50 (4) ◽  
pp. 299-308 ◽  
Author(s):  
R. Yan ◽  
Y.L. Ng ◽  
X.G. Chen ◽  
A.L. Geng ◽  
W.D. Gould ◽  
...  

Biological treatments of odorous compounds, as compared to chemical or physical technologies, are in general ecologically and environmentally favourable. However, there are some inefficiencies relative to the media used in biofiltration processes, such as the need for an adequate residence time; the limited lifetime, and pore blockage of media, which at present render the technology economically non-viable. The aim of the study is to develop novel active media to be used in performance-enhanced biofiltration processes, by achieving an optimum balance and combination of the media adsorption capacity with the biodegradation of H2S through the bacteria immobilised on the media. An enrichment culture was obtained from activated sludges in order to metabolise thiosulphate. Batch-wise experiments were conducted to optimise the bacteria immobilisation on activated carbon, so as to develop a novel “biocarbon”. Biofilm was mostly developed through culturing the bacteria with the presence of carbons in mineral media. SEM and BET tests of the carbon along with the culturing process were used to identify, respectively, the biofilm development and biocarbon porosity. Breakthrough tests evaluated the biocarbon performance with varying gas resistance time, inlet H2S concentration, and type of support materials. Fundamental issues were discussed, including type of support material, mode of bacteria immobilisation, pore blockages, and biodegradation kinetics, etc. This batch-wise study provides a basis for our future research on optimisation of the biofiltration process using a bio-trickling reactor.


1998 ◽  
Vol 4 (S2) ◽  
pp. 814-815
Author(s):  
E.F. Osten ◽  
M.S. Smith

We are using the term "Industrial Polymers" to refer to polymers [plastics] that are produced by the ton or (in the case of films) by the mile. For example, in descending order of world-wide use (tonnage), the top eight of these polymers are polyethylene (PE), polyvinyl chloride (PVC), polypropylene (PP), styrene polymers (including polystyrene - PS, and acrylonitrile-butadienestyrene/ styrene-acrylonitrile - ABS/SAN), polyesters (PETP), polyurethane (PU), phenolics and aminoplastics.Industrial polymers, which have been produced by the millions of tons for the last five decades and are of obvious social and economic importance, have been exhaustively characterized. Structural features which affect physical properties and indicate process variables have been studied by many techniques other than microscopy (x-ray diffraction, thermal analysis, rheology, chromatographies, etc.). Microscopy techniques for polymer characterization have been well documented. Our motivation to apply field emission (high resolution) scanning electron microscopy to the study of polymers is: (1) The application of low voltage, high resolution SEM to biological materials is well characterized.


1996 ◽  
Vol 44 (2) ◽  
pp. 145-150 ◽  
Author(s):  
G. Neri ◽  
A. Donato ◽  
C. Milone ◽  
R. Pietropaolo ◽  
J. Schwank

2008 ◽  
Vol 1107 ◽  
Author(s):  
G. Möbus ◽  
G. Yang ◽  
Z. Saghi ◽  
X. Xu ◽  
R.J. Hand ◽  
...  

AbstractCharacterization of glasses and glass nanocomposites using modern transmission electron microscopy techniques is demonstrated. Techniques used include: (i) high-angle-annular dark field STEM for imaging of nanocomposites, (ii) electron tomography for 3D reconstruction and quantification of nanoparticle volume fractions, and (iii) fine structure electron energy loss spectroscopy for evaluation of boron coordination. Precipitation of CeO2nanoparticles in borosilicate glasses is examined as a function of glass composition and redox partner elements. A large increase in the solubility of Ce is found for compositions where Ce retains +IV valence in the glass. Irradiation experiments with electrons and λ-rays are summarized and the degree of damage is compared by using changes in the boron K-edge fine structure, which allows the gradual transition from BO4to BO3coordination to be followed.


Sign in / Sign up

Export Citation Format

Share Document