Morphological and structural study of integrated circuits using XTEM and HREM

Author(s):  
L.M. Bharadwaj ◽  
L.M. Gantcheva ◽  
S. Simov ◽  
G. Balossier ◽  
J. Faure ◽  
...  

There is increasing interest in the use of cross-sectional transmission electron microscopy (XTEM) to understand fundamental and technological problems associated with fabrication of integrated circuit (IC). This is because with XTEM it is possible to obtain exact morphological configuration and structure at atomic level of different layers and interfaces. For the study of a MOS device we used slightly modified XTEM specimen preparation technique than reported by other authors. To monitor region of interest during mechanical preparation two techniques were used as illustrated in Fig.1. First by glueing two slabs (10 × 4 mm2) of wafer each exactly identical in terms of geometrical dimension and device features and second by glueing a transparent glass plate on the top of wafer. The epoxy has higher ion beam etching rate than other materials so to obtain uniform thinning, ion beam was centered slightly away from the epoxy line . The thinned specimens were observed under Philips CM-30 electron microscope.

1990 ◽  
Vol 199 ◽  
Author(s):  
Kyung-ho Park

ABSTRACTA procedure for preparing cross-sectional TEM specimens by focused ion beam etching (FIB) of specific regions on an integrated circuit chip is outlined. The investigation of the morphology, structure and local chemistry of precisely selected regions of semiconductor devices becomes increasingly important since the lateral dimensions and layer thickness of device structures are continually being reduced. The standard technique of preparing specimens for TEM, whether planar or cross-sectional, cannot select particular small regions. Some techniques and a number of tools and fixtures have been proposed which allow us to prepare TEM specimen of prespecified locations in complex devices. Most of these techniques, however, are still very difficult, tedious process and time consuming.A new technique has been proposed recently involving the use of FIB. The technique ensures that the preselected area of submicron scale will be located in the electron transparent section used for TEM imaging, in preparation turn-around time of about two hours. The TEM imaging of specific contacts via hole in a VLSI chip is illustrated.


Author(s):  
C.S. Bonifacio ◽  
P. Nowakowski ◽  
M.J. Campin ◽  
J.T. Harbaugh ◽  
M. Boccabella ◽  
...  

Abstract The sub-nanometer resolution that transmission electron microscopy (TEM) provides is critical to the development and fabrication of advanced integrated circuits. TEM specimens are usually prepared using the focused ion beam, which can cause gallium-induced artifacts and amorphization. This work presents the use of a concentrated argon ion beam for reproducible TEM specimen preparation using automatic milling termination and targeted ion milling of device features; the result is high-quality and electron-transparent specimens of less than 30 nm. Such work is relevant for semiconductor product development and failure analysis.


1998 ◽  
Author(s):  
S. Subramanian ◽  
P. Schani ◽  
E. Widener ◽  
P. Liston ◽  
J. Moss ◽  
...  

Abstract A selected area planar TEM (SAPTEM) sample preparation technique for failure analysis of integrated circuits using a transmission electron microscope has been developed. The technique employs a combination of mechanical grinding, selective wet/dry chemical etching (if required) and a two step focused ion beam IIFIB) milling. The mechanical grinding steps include: (a) a backside grind to achieve a die thickness less than 30 µm, (b) the support half ring glue, and (c) a cross-section grind from one side to reach less than 35 pm to the failing site. A selective wet or dry chemical etch is applied before, between,, or after FIB thinning depending on the nature of problem and device components. The FIB milling steps involve: (is) a high ion current cross-sectional cut to reach as close as 5-8 µm to the area of interest (b) a final planar thinning with the ion beam parallel to the surface of the die. The plan view procedure offers unique geometric advantage over the cross-section method for failure analysis of problems that are limited to silicon or certain layers of the device. Iln the cross-sectional approach, a thin section (thickness less than 250 µm) of a device is available for failure analysis, whereas in the planar procedure a 20 µm2 area of any layer (thickness less than 250 µm) of the device is available. The above advantage has been successfully exploited to identify and solve the following prablems in fast static random access memories (FSRAM): (i) random gateoxide rupture that resulted in single bit failures, (ii) random dislocations from the buried contact trenching that caused single bit failures and general silicon defectivity (e.g. implant damage and spacer edge defects), and (iii) interracial reactions.


Author(s):  
S.R. Glanvill

This paper summarizes the application of ultramicrotomy as a specimen preparation technique for some of the Materials Science applications encountered over the past two years. Specimens 20 nm thick by hundreds of μm lateral dimension are readily prepared for electron beam analysis. Materials examined include metals, plastics, ceramics, superconductors, glassy carbons and semiconductors. We have obtain chemical and structural information from these materials using HRTEM, CBED, EDX and EELS analysis. This technique has enabled cross-sectional analysis of surfaces and interfaces of engineering materials and solid state electronic devices, as well as interdiffusion studies across adjacent layers.Samples are embedded in flat embedding moulds with Epon 812 epoxy resin / Methyl Nadic Anhydride mixture, using DY064 accelerator to promote the reaction. The embedded material is vacuum processed to remove trapped air bubbles, thereby improving the strength and sectioning qualities of the cured block. The resin mixture is cured at 60 °C for a period of 80 hr and left to equilibrate at room temperature.


Author(s):  
Ching Shan Sung ◽  
Hsiu Ting Lee ◽  
Jian Shing Luo

Abstract Transmission electron microscopy (TEM) plays an important role in the structural analysis and characterization of materials for process evaluation and failure analysis in the integrated circuit (IC) industry as device shrinkage continues. It is well known that a high quality TEM sample is one of the keys which enables to facilitate successful TEM analysis. This paper demonstrates a few examples to show the tricks on positioning, protection deposition, sample dicing, and focused ion beam milling of the TEM sample preparation for advanced DRAMs. The micro-structures of the devices and samples architectures were observed by using cross sectional transmission electron microscopy, scanning electron microscopy, and optical microscopy. Following these tricks can help readers to prepare TEM samples with higher quality and efficiency.


Author(s):  
K. Doong ◽  
J.-M. Fu ◽  
Y.-C. Huang

Abstract The specimen preparation technique using focused ion beam (FIB) to generate cross-sectional transmission electron microscopy (XTEM) samples of chemical vapor deposition (CVD) of Tungsten-plug (W-plug) and Tungsten Silicides (WSix) was studied. Using the combination method including two axes tilting[l], gas enhanced focused ion beam milling[2] and sacrificial metal coating on both sides of electron transmission membrane[3], it was possible to prepare a sample with minimal thickness (less than 1000 A) to get high spatial resolution in TEM observation. Based on this novel thinning technique, some applications such as XTEM observation of W-plug with different aspect ratio (I - 6), and the grain structure of CVD W-plug and CVD WSix were done. Also the problems and artifacts of XTEM sample preparation of high Z-factor material such as CVD W-plug and CVD WSix were given and the ways to avoid or minimize them were suggested.


Author(s):  
Chin Kai Liu ◽  
Chi Jen. Chen ◽  
Jeh Yan.Chiou ◽  
David Su

Abstract Focused ion beam (FIB) has become a useful tool in the Integrated Circuit (IC) industry, It is playing an important role in Failure Analysis (FA), circuit repair and Transmission Electron Microscopy (TEM) specimen preparation. In particular, preparation of TEM samples using FIB has become popular within the last ten years [1]; the progress in this field is well documented. Given the usefulness of FIB, “Artifact” however is a very sensitive issue in TEM inspections. The ability to identify those artifacts in TEM analysis is an important as to understanding the significance of pictures In this paper, we will describe how to measure the damages introduced by FIB sample preparation and introduce a better way to prevent such kind of artifacts.


1998 ◽  
Vol 4 (S2) ◽  
pp. 860-861 ◽  
Author(s):  
A. Ramirez de Arellano López ◽  
W.-A. Chiou ◽  
K. T. Faber

The results of TEM analyses of materials are critically dependent on the quality of the sample prepared. Although numerous techniques have been developed in the last two decades, differential thinning of inhomogeneous materials remains a serious problem. Recently, focused ion beam (FIB) technique has been introduced for cross-sectional sample preparation for TEM and SEM.A novel system for depositing a fine-grain (∼ 200 nm) ceramic coating on a metal surface via a patent pending Small-Particle Plasma Spray (SPPS) technique has been developed at the Basic Industry Research Laboratory of Northwestern University. To understand the properties of the coated surface, the ceramic/metal interface and the microstructure of the ceramic coating must be investigated. This paper presents a comparison of the microstructure of an A12O3 coating on a mild steel substrate prepared using conventional and FEB techniques.


2001 ◽  
Vol 7 (3) ◽  
pp. 287-291
Author(s):  
Toshie Yaguchi ◽  
Hiroaki Matsumoto ◽  
Takeo Kamino ◽  
Tohru Ishitani ◽  
Ryoichi Urao

AbstractIn this study, we discuss a method for cross-sectional thin specimen preparation from a specific site using a combination of a focused ion beam (FIB) system and an intermediate voltage transmission electron microscope (TEM). A FIB-TEM compatible specimen holder was newly developed for the method. The thinning of the specimen using the FIB system and the observation of inside structure of the ion milled area in a TEM to localize a specific site were alternately carried out. The TEM fitted with both scanning transmitted electron detector and secondary electron detector enabled us to localize the specific site in a halfway milled specimen with the positional accuracy of better than 0.1 µm. The method was applied to the characterization of a precipitate in a steel. A submicron large precipitate was thinned exactly at its center for the characterization by a high-resolution electron microscopy and an elemental mapping.


1998 ◽  
Vol 4 (S2) ◽  
pp. 492-493 ◽  
Author(s):  
M.W. Phaneuf ◽  
J. Li ◽  
T. Malis

Focused Ion Beam or FIB systems have been used in integrated circuit production for some time. The ability to combine rapid, precision focused ion beam sputtering or gas-assisted ion etching with focused ion beam deposition allows for rapid-prototyping of circuit modifications and failure analysis of defects even if they are buried deep within the chip's architecture. Inevitably, creative TEM researchers reasoned that a FIB could be used to produce site specific parallel-sided, electron transparent regions, thus bringing about the rather unique situation wherein the specimen preparation device often was worth as much as the TEM itself.More recently, FIB manufacturers have concentrated on improving the resolution and imaging characteristics of these instruments, resulting in a more general-purpose characterization tool. The Micrion 2500 FIB system used in this study is capable of 4 nm imaging resolution using either secondary electron or secondary ions, both generated by a 50 kV liquid metal gallium ion source.


Sign in / Sign up

Export Citation Format

Share Document