scholarly journals Function modeling combined with physics-based reasoning for assessing design options and supporting innovative ideation

Author(s):  
Hossein Mokhtarian ◽  
Eric Coatanéa ◽  
Henri Paris

AbstractFunctional modeling is an analytical approach to design problems that is widely taught in certain academic communities but not often used by practitioners. This approach can be applied in multiple ways to formalize the understanding of the systems, to support the synthesis of the design in the development of a new product, or to support the analysis and improvement of existing systems incrementally. The type of usage depends on the objectives that are targeted. The objectives can be categorized into two key groups: discovering a totally new solution, or improving an existing one. This article proposes to use the functional modeling approach to achieve three goals: to support the representation of physics-based reasoning, to use this physics-based reasoning to assess design options, and finally to support innovative ideation. The exemplification of the function-based approach is presented via a case study of a glue gun proposed for this Special Issue. A reverse engineering approach is applied, and the authors seek an incremental improvement of the solution. As the physics-based reasoning model presented in this article is heavily dependent on the quality of the functional model, the authors propose a general approach to limit the interpretability of the functional representations by mapping the functional vocabulary with elementary structural blocks derived from bond graph theory. The physics-based reasoning approach is supported by a mathematical framework that is summarized in the article. The physics-based reasoning model is used for discovering the limitations of solutions in the form of internal contradictions and guiding the design ideation effort.

Author(s):  
Stephen S. Altus ◽  
Ilan M. Kroo ◽  
Peter J. Gage

Abstract Complex engineering studies typically involve hundreds of analysis routines and thousands of variables. The sequence of operations used to evaluate a design strongly affects the speed of each analysis cycle. This influence is particularly important when numerical optimization is used, because convergence generally requires many iterations. Moreover, it is common for disciplinary teams to work simultaneously on different aspects of a complex design. This practice requires decomposition of the analysis into subtasks, and the efficiency of the design process critically depends on the quality of the decomposition achieved. This paper describes the development of software to plan multidisciplinary design studies. A genetic algorithm is used, both to arrange analysis subroutines for efficient execution, and to decompose the task into subproblems. The new planning tool is compared with an existing heuristic method. It produces superior results when the same merit function is used, and it can readily address a wider range of planning objectives.


1974 ◽  
Vol 18 (3) ◽  
pp. 368-375
Author(s):  
William B. Askren ◽  
Kenneth D. Korkan

A Design Option Decision Tree (DODT) is a graphic means of showing the design options available at each decision point in the design process. Several examples of DODTs for aircraft design problems are shown. The procedures for developing a DODT are described. A proposed method for use of the DODT to resolve a design problem is presented. This method includes evaluating the design options in the Tree for impact on the system, and tracing paths through the Tree as dictated by specific design goals. The use of human factors data as one of the evaluation parameters is illustrated. The paper concludes with a discussion of other uses of a DODT.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Akash Saxena ◽  
Shalini Shekhawat

With the development of society along with an escalating population, the concerns regarding public health have cropped up. The quality of air becomes primary concern regarding constant increase in the number of vehicles and industrial development. With this concern, several indices have been proposed to indicate the pollutant concentrations. In this paper, we present a mathematical framework to formulate a Cumulative Index (CI) on the basis of an individual concentration of four major pollutants (SO2, NO2, PM2.5, and PM10). Further, a supervised learning algorithm based classifier is proposed. This classifier employs support vector machine (SVM) to classify air quality into two types, that is, good or harmful. The potential inputs for this classifier are the calculated values of CIs. The efficacy of the classifier is tested on the real data of three locations: Kolkata, Delhi, and Bhopal. It is observed that the classifier performs well to classify the quality of air.


Author(s):  
B A Marlow

Experience shows that the reliability of large turbogenerators depends substantially on the quality of detail design, particularly the quality of the mechanical design. In addition to the design problems common to all high-speed rotating machinery, the mechanical design of generators must take account of certain electrical requirements. This paper gives an insight into the detail mechanical design of large turbogenerators paying particular attention to the interaction of electrical requirements on the mechanical design.


2010 ◽  
Vol 5 (2) ◽  
pp. 216-220
Author(s):  
B. P. Sitepu

Scientific journal is one of the periodical publications intended to widely disseminate research findings useful for research and academic communities. Articles published in the journal tend to be highly technical, representing the latest theoretical research and experimental results in the field of science, technolgy, or arts covered by the journal. Articles in the journal can be used as references and inspire researchers and scholars to do further researh. The quantity and quality of journals in a country can indicate the quality of the human resource and development of science, technology, and arts in the country. Based on the available data, the quantity and the quality of journal in Indonesia are still unsatisfactory. This article discusses some problems in managing journal and provides a number of recommendation which are useful for those publishing a journal.


2022 ◽  
Vol 19 (1) ◽  
pp. 473-512
Author(s):  
Rong Zheng ◽  
◽  
Heming Jia ◽  
Laith Abualigah ◽  
Qingxin Liu ◽  
...  

<abstract> <p>Arithmetic optimization algorithm (AOA) is a newly proposed meta-heuristic method which is inspired by the arithmetic operators in mathematics. However, the AOA has the weaknesses of insufficient exploration capability and is likely to fall into local optima. To improve the searching quality of original AOA, this paper presents an improved AOA (IAOA) integrated with proposed forced switching mechanism (FSM). The enhanced algorithm uses the random math optimizer probability (<italic>RMOP</italic>) to increase the population diversity for better global search. And then the forced switching mechanism is introduced into the AOA to help the search agents jump out of the local optima. When the search agents cannot find better positions within a certain number of iterations, the proposed FSM will make them conduct the exploratory behavior. Thus the cases of being trapped into local optima can be avoided effectively. The proposed IAOA is extensively tested by twenty-three classical benchmark functions and ten CEC2020 test functions and compared with the AOA and other well-known optimization algorithms. The experimental results show that the proposed algorithm is superior to other comparative algorithms on most of the test functions. Furthermore, the test results of two training problems of multi-layer perceptron (MLP) and three classical engineering design problems also indicate that the proposed IAOA is highly effective when dealing with real-world problems.</p> </abstract>


Author(s):  
Mirjana D. Stojanovic ◽  
Vladanka S. Acimovic-Raspopovic

This chapter considers communication issues for small and medium enterprises (SMEs) from both provider and customer perspectives. SME communication infrastructure at the individual site should usually be built around Ethernet-based local area network with a remotely manageable integrated access device that enables high speed Internet access, virtual private networking, Voice over Internet Protocol (VoIP) functionality and collaborative services. We further address several open quality of service (QoS) issues that include: service level agreements, signaling for quality of service and management aspects. The proposed framework for service management encompasses interfaces for QoS-aware and legacy applications, generic service level specification, functional model of service negotiation and management policies.


Author(s):  
J.S. Linsey ◽  
K.L. Wood ◽  
A.B. Markman

AbstractDesign by analogy is a powerful part of the design process across the wide variety of modalities used by designers such as linguistic descriptions, sketches, and diagrams. We need tools to support people's ability to find and use analogies. A deeper understanding of the cognitive mechanisms underlying design and analogy is a crucial step in developing these tools. This paper presents an experiment that explores the effects of representation within the modality of sketching, the effects of functional models, and the retrieval and use of analogies. We find that the level of abstraction for the representation of prior knowledge and the representation of a current design problem both affect people's ability to retrieve and use analogous solutions. A general semantic description in memory facilitates retrieval of that prior knowledge. The ability to find and use an analogy is also facilitated by having an appropriate functional model of the problem. These studies result in a number of important implications for the development of tools to support design by analogy. Foremost among these implications is the ability to provide multiple representations of design problems by which designers may reason across, where the verb construct in the English language is a preferred mode for these representations.


2003 ◽  
Vol 125 (4) ◽  
pp. 682-693 ◽  
Author(s):  
Mark A. Kurfman ◽  
Michael E. Stock ◽  
Robert B. Stone ◽  
Jagan Rajan ◽  
Kristin L. Wood

This paper presents the results of research attempts to substantiate repeatability and uniqueness claims of a functional model derivation method following a hypothesis generation and testing procedure outlined in design research literature. Three experiments are constructed and carried out with a participant pool that possesses a range of engineering design skill levels. The experiments test the utility of a functional model derivation method to produce repeatable functional models for a given product among different designers. In addition to this, uniqueness of the functional models produced by the participants is examined. Results indicate the method enhances repeatability and leads designers toward a unique functional model of a product. Shortcomings of the method and opportunities for improvement are also identified.


Sign in / Sign up

Export Citation Format

Share Document