scholarly journals Antibiotic resistance of Campylobacter in raw retail chickens and imported chicken portions

2003 ◽  
Vol 131 (3) ◽  
pp. 1181-1186 ◽  
Author(s):  
I. G. WILSON

Campylobacter isolates from raw retail chickens (n=434) sampled between 1998 and 2000 were tested for resistance to 12 antibiotics. Among 208 campylobacters tested, more than 90% of isolates were susceptible to 4 out of 9 antibiotics (nalidixic acid, erythromycin, chloramphenicol and gentamicin). Most campylobacters were resistant to 3 antibiotics and multiple resistance was found in 4%. Ciprofloxacin resistance was 11%. Campylobacter contamination (28%) in imported chickens (n=150) was almost half that found in local whole chickens (50%), but the resistance of imported isolates (n=42) was similar to that of local campylobacters. Resistance in isolates from imported chicken breasts was generally more common, but to only 4 antibiotics. Resistance patterns of chicken isolates were compared to human clinical isolates (n=494), and a greater similarity was found between the clinical and local isolates than with imported campylobacters. Lower chloramphenicol resistance was found in clinical Campylobacter isolates than in those from chicken sources.

2006 ◽  
Vol 134 (6) ◽  
pp. 1282-1291 ◽  
Author(s):  
K. McGILL ◽  
D. COWLEY ◽  
L. MORAN ◽  
P. SCATES ◽  
A. O'LEARY ◽  
...  

The antimicrobial resistance profiles of Campylobacter isolates recovered from a range of retail food samples (n=374) and humans (n=314) to eight antimicrobial compounds were investigated. High levels of resistance in food C. jejuni isolates were observed for ceftiofur (58%), ampicillin (25%) and nalidixic acid (17%) with lower levels observed for streptomycin (7·9%) and chloramphenicol (8·3%). A total of 80% of human C. jejuni isolates were resistant to ceftiofur, while 17% showed resistance to ampicillin and nalidixic acid, 8·6% to streptomycin and 4·1% to chloramphenicol. Resistance to clinically relevant antimicrobials such as erythromycin, ciprofloxacin and tetracycline was 6·7, 12, and 15% respectively for all food isolates and was similar to corresponding resistance prevalences observed for human isolates, where 6·4, 12 and 13% respectively were found to be resistant. Comparisons of C. jejuni isolates in each location showed a high degree of similarity although some regional variations did exist. Comparison of total C. jejuni and C. coli populations showed minor differences, with C. jejuni isolates more resistant to ampicillin and ceftiofur. Multidrug resistance patterns showed some profiles common to human and clinical isolates.


2021 ◽  
pp. 158-164
Author(s):  
Ferdausi Ali ◽  
Tazriyan Noor Silvy ◽  
Tanim Jabid Hossain ◽  
Md. Kamal Uddin ◽  
Mohammad Seraj Uddin

Background and Aim: Dissemination of multidrug-resistant (MDR) Salmonella through food chains has serious health implications, with higher rates of morbidity and mortality. Broiler meat remains a major reservoir of Salmonella contamination. The lack of proper hygiene in local broiler operations has, therefore, prompted this research into the assessment of Salmonella contamination in local shops and associated antimicrobial resistance (AMR) phenotypes. Materials and Methods: A total of 55 broiler samples including skin, meat, and swab samples from chopping and dressing sites were included in the study. The samples were collected from broiler shops in Hathazari, Bangladesh, and screened for the presence of Salmonella strains using culture-based methods. The isolates were biochemically characterized and further tested for AMR to eight common antibiotics using the disk diffusion technique. Results: Salmonella contaminations were identified in 29% (16/55) of the broiler samples. Swab samples collected from the chopping sites appeared to be contaminated in higher proportions (33%) than those collected from the dressing areas (25%). On the other hand, the skin samples (50%) were detected with a higher percentage of contamination than the meat samples (25%). All Salmonella isolates showed resistance toward at least one of the eight antibiotics used. Although none of the isolates was resistant to all antibiotics, 18.75% showed resistance to a maximum of seven antibiotics. Resistance to nalidixic acid was most prevalent (87.5%), followed by sulfamethoxazole-trimethoprim (81.25%), erythromycin (81.25%), tetracycline (75%), streptomycin (56.25%), ampicillin-clavulanic acid (50%), chloramphenicol (43.75%), and cefotaxime (18.75%). The resistance patterns of the isolates were found to be highly diverse. The most frequently observed pattern was the following: Ampicillin-clavulanic acid-sulfamethoxazole-trimethoprim-nalidixic acid-tetracycline-chloramphenicol-streptomycin-erythromycin. Conclusion: The relatively high prevalence of MDR strains in the samples underlies an urgent need for surveillance and control measures concerning hygiene and antibiotic use in local broiler operations.


1978 ◽  
Vol 24 (11) ◽  
pp. 1358-1365 ◽  
Author(s):  
P. D. Duck ◽  
J. R. Dillon ◽  
H. Lior ◽  
L. Eidus

The antibiotic susceptibility of 2609 Salmonella isolates, collected during the period 1975–1976, was tested and the relationships between antibiotic-resistance pattern, source of isolation, and serovar and phagovar were determined. Of 95 serovars examined, 40 were sensitive to all of the antibiotics tested. Salmonella typhimurium was the major contributor to multiple resistance from both human and non-human sources.Multiply resistant strains were not found from animal feed sources and, in addition, S. typhimurium, one of the most predominant serovars, was found in every source but animal feeds.In comparing phagovar with resistance patterns, certain correlations were found. Greater than 90% of phagovar 10 was sensitive to all antibiotics tested whereas over 80% of phagovars 3-aerogenic, 92, and 123 were multiply resistant.


2013 ◽  
Vol 76 (1) ◽  
pp. 124-128 ◽  
Author(s):  
KEILA L. PEREZ ◽  
M. JAHANGIR ALAM ◽  
ALEJANDRO CASTILLO ◽  
T. MATTHEW TAYLOR

Escherichia albertii is an emerging gram-negative facultative rod that has been implicated in multiple cases of human diarrheal disease, particularly in young children. When biochemical and other typing methods have been used, this organism has often been misidentified due to similarities with other members of the family Enterobacteriaceae. Isolates have been reported to be capable of producing attachment and effacement lesions via the synthesis of intimin, cytolethal distending toxin, and a variant form of Shiga toxin. The purposes of this study were to characterize the antibiotic resistance characteristics and the growth of individual strains of E. albertii on raw ground beef at different storage temperatures. Nalidixic acid–resistant strains of E. albertii were inoculated onto raw ground beef to a target of 4.0 log CFU/g, and samples were then aerobically incubated at 5, 22, or 35°C for various time periods prior to microbiological enumeration of the pathogen on lactose-free MacConkey agar containing 50 mg of nalidixic acid per liter and 0.5% l-rhamnose. Antibiotic resistance was determined using a broth microdilution assay. E. albertii did not grow at 5°C, with populations declining slowly over 14 days of refrigerated storage. Strains of the organism grew well under abusive storage, increasing by 2.5 to 3.1 log CFU/g and 4.1 to 4.3 log CFU/g after 24 h at 22 and 35°C, respectively. All strains were resistant to tetracycline but were sensitive to tested cephalosporins and chloramphenicol. Resistance to penicillin was observed, but susceptibility to other members of the β-lactam group, including ampicillin, amoxicillin, and clavulanic acid, was recorded. E. albertii represents an emerging pathogen with a probable foodborne transmission route. Future research should focus on verifying food process measures able to inactivate the pathogen.


2019 ◽  
Vol 34 (2) ◽  
pp. 61-66
Author(s):  
Sunjukta Ahsan ◽  
Mayen Uddin ◽  
Juthika Mandal ◽  
Marufa Zerin Akhter

Antibiotic resistant E. coli are prevalent in Bangladesh. The indiscriminate use of antimicrobials and ready availability of over the counter drugs are responsible for this. This study was conducted to investigate the susceptibility of clinical Escherichia coli to the antibiotics Imipenem, Ceftriaxone, Ceftazidime and Azithromycin. Kirby-Bauer disk diffusion method was used to determine sensitivity to antimicrobials. Agar based assay was employed for the detection of efflux pumps. PCR was used amplify antibiotic resistance genes.All isolates were resistant to Ceftriaxone whereas most were sensitive to Imipenem. The MICs of Ceftazidime and Azithromycin ranged between 128 μg/ml and 256 μg/ml. The prevalence of ²-lactamase producers was 57.89 % with 36.84 % of the isolates exhibiting ESBL activity. No specific correlation could be found between plasmid sizes and antibiotic resistance patterns. Efflux pump was found to be involved in Azithromycin resistance in 63.15% of the isolates. The gene for phosphotransferase, mph(A) was the most common among the macrolide modifying genes, being present in 73.68% (14/19) of the isolates followed by both erm(A) anderm(C) esterases each present in 10.53% (2/19) isolates. This study concluded that clinical isolates of E. coli in Bangladesh could be resistant to multiple classes of antibiotics through different mechanisms of resistance. Bangladesh J Microbiol, Volume 34 Number 2 December 2017, pp 61-66


2009 ◽  
Vol 36 (9) ◽  
pp. 1558-1566 ◽  
Author(s):  
Prapurna Koney ◽  
Audra Morse

The present study was conducted to determine the effect of analgesics (aspirin and salicylic acid) on heterotrophic organisms and ammonia-oxidizing bacteria (AOB) resistance to antibiotics (amoxicillin, ciprofloxacin, and nalidixic acid) using the spread plate method. The bacteria were cultured from a biological graywater reclamation system. The results indicate an increase in ciprofloxacin resistance of AOB at concentrations of 0.5 and 1 mmol/L salicylic acid and aspirin. An increase in resistance of heterotrophic organisms and AOB in the presence of salicylic acid and aspirin was observed at 0.064 and 0.107 mmol/L of nalidixic acid. However, the effect of salicylic acid and aspirin on amoxicillin resistance of heterotrophic organisms and AOB was minimal. This study is important because it focuses on the antibiotic resistance of the less studied environmental microbes by considering the impact of compounds other than antibiotics to induce antibiotic resistance.


Sign in / Sign up

Export Citation Format

Share Document