scholarly journals Inferring SARS-CoV-2 RNA shedding into wastewater relative to time of infection

2022 ◽  
pp. 1-23
Author(s):  
Sean Cavany ◽  
Aaron Bivins ◽  
Zhenyu Wu ◽  
Devin North ◽  
Kyle Bibby ◽  
...  
Keyword(s):  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chad R. Wells ◽  
Jeffrey P. Townsend ◽  
Abhishek Pandey ◽  
Seyed M. Moghadas ◽  
Gary Krieger ◽  
...  

AbstractFor COVID-19, it is vital to understand if quarantines shorter than 14 days can be equally effective with judiciously deployed testing. Here, we develop a mathematical model that quantifies the probability of post-quarantine transmission incorporating testing into travel quarantine, quarantine of traced contacts with an unknown time of infection, and quarantine of cases with a known time of exposure. We find that testing on exit (or entry and exit) can reduce the duration of a 14-day quarantine by 50%, while testing on entry shortens quarantine by at most one day. In a real-world test of our theory applied to offshore oil rig employees, 47 positives were obtained with testing on entry and exit to quarantine, of which 16 had tested negative at entry; preventing an expected nine offshore transmission events that each could have led to outbreaks. We show that appropriately timed testing can make shorter quarantines effective.


2021 ◽  
Vol 10 (6) ◽  
pp. 1256
Author(s):  
Ko Nakajo ◽  
Hiroshi Nishiura

Estimation of the effective reproduction number, R(t), of coronavirus disease (COVID-19) in real-time is a continuing challenge. R(t) reflects the epidemic dynamics based on readily available illness onset data, and is useful for the planning and implementation of public health and social measures. In the present study, we proposed a method for computing the R(t) of COVID-19, and applied this method to the epidemic in Osaka prefecture from February to September 2020. We estimated R(t) as a function of the time of infection using the date of illness onset. The epidemic in Osaka came under control around 2 April during the first wave, and 26 July during the second wave. R(t) did not decline drastically following any single intervention. However, when multiple interventions were combined, the relative reductions in R(t) during the first and second waves were 70% and 51%, respectively. Although the second wave was brought under control without declaring a state of emergency, our model comparison indicated that relying on a single intervention would not be sufficient to reduce R(t) < 1. The outcome of the COVID-19 pandemic continues to rely on political leadership to swiftly design and implement combined interventions capable of broadly and appropriately reducing contacts.


2006 ◽  
Vol 74 (6) ◽  
pp. 3519-3529 ◽  
Author(s):  
Maria Kaparakis ◽  
Karen L. Laurie ◽  
Odilia Wijburg ◽  
John Pedersen ◽  
Martin Pearse ◽  
...  

ABSTRACT Gastric Helicobacter spp. induce chronic gastritis that may lead to ulceration and dysplasia. The host elicits a T helper 1 (Th1) response that is fundamental to the pathogenesis of these bacteria. We analyzed immune responses in Helicobacter-infected, normal mice depleted of CD4+ CD25+ T cells to investigate the in vivo role of regulatory T cells (Tregs) in the modulation of Helicobacter immunopathology. BALB/c and transgenic mice were depleted of CD4+ CD25+ T cells by administration of an anti-CD25 antibody either at the time of infection with Helicobacter or during chronic infection and gastritis. Depletion of CD25+ Tregs prior to and during infection of mice with Helicobacter spp. did not affect either bacterial colonization or severity of gastritis. Depletion of CD25+ Tregs was associated with increased Helicobacter-specific antibody levels and an altered isotype distribution. Paragastric lymph node cells from CD25+ Treg-depleted and control infected mice showed similar proliferation to Helicobacter antigens, but only cells from anti-CD25-treated animals secreted Th2 cytokines. CD25+ Tregs do not control the level of gastritis induced by gastric Helicobacter spp. in normal, thymus-intact BALB/c mice. However, CD25+ Tregs influence the cytokine and antibody responses induced by infection. Autoimmune gastritis is not induced in Helicobacter-infected mice depleted of CD25+ Tregs but is induced in CD25+ Treg-depleted mice, which have a higher frequency of autoreactive T cells.


1989 ◽  
Vol 9 (1) ◽  
pp. 6-14
Author(s):  
S J Compere ◽  
P A Baldacci ◽  
A H Sharpe ◽  
R Jaenisch

Infection of mouse embryos at 8 days of gestation with a replication-defective retrovirus carrying the human c-Ha-ras-1 oncogene led to efficient and rapid induction of hyperplastic lesions. Twenty-four percent of viable off-spring developed abnormal growths after infection with purified virus. The lesions contained a single integrated provirus and produced viral RNA and the Ha-ras oncogene product (p21). The latency period between the time of infection and appearance of the lesions suggested that secondary alterations in addition to activated ras were necessary for neoplasms to develop. The earliest and most abundant growths were cutaneous and appeared from 4 to 36 weeks of age, with a median of 4 weeks of age. A number of subcutaneous lesions also developed over the same time span but at a median of 18 weeks of age. The rapid development of cutaneous lesions in response to transduction of the ras oncogene contrasts with other studies in which adult skin required secondary treatment with promoters prior to ras induction of epithelial hyperplasia. These results demonstrate that infection of midgestation mouse embryos allows rapid analysis of oncogene potency in skin.


2011 ◽  
Vol 83 (2) ◽  
pp. 545-555 ◽  
Author(s):  
Neide M Moreira ◽  
Débora M. G Sant'ana ◽  
Eduardo J. A Araújo ◽  
Max J. O Toledo ◽  
Mônica L Gomes ◽  
...  

Define an experimental model by evaluating quantitative and morphometric changes in myenteric neurons of the colon of mice infected with Trypanosoma cruzi. Twenty-eight Swiss male mice were distributed into groups: control (CG, n=9) and inoculated with 100 (IG100, n=9) and 1000 (IG1000, n=10) blood trypomastigotes, Y strain-T. cruzi II. Parasitemia was evaluated from 3-25 days post inoculation (dpi) with parasites peak of 7.7 × 10(6) and 8.4 × 10(6) trypomastigotes/mL at 8th dpi (p>0.05) in IG100 and IG1000, respectively. Chronic phase of the infection was obtained with two doses of 100mg/Kg/weight and one dose of 250mg/Kg/weight of Benznidazole on 11, 16 and 18 dpi. Three animals from each group were euthanized at 18, 30 and 75 dpi. The colon was stained with Giemsa. The quantitative and morphometric analysis of neurons revealed that the infection caused a decrease of neuronal density on 30th dpi (p<0.05) and 75 dpi (p<0.05) in IG100 and IG1000. Infection caused death and neuronal hypertrophy in the 75th dpi in IG100 and IG1000 (p<0.05, p<0.01). The changes observed in myenteric neurons were directly related to the inoculate and the time of infection


2000 ◽  
Vol 90 (8) ◽  
pp. 788-800 ◽  
Author(s):  
L. V. Madden ◽  
G. Hughes ◽  
M. E. Irwin

A general approach was developed to predict the yield loss of crops in relation to infection by systemic diseases. The approach was based on two premises: (i) disease incidence in a population of plants over time can be described by a nonlinear disease progress model, such as the logistic or monomolecular; and (ii) yield of a plant is a function of time of infection (t) that can be represented by the (negative) exponential or similar model (ζ(t)). Yield loss of a population of plants on a proportional scale (L) can be written as the product of the proportion of the plant population newly infected during a very short time interval (X′(t)dt) and ζ(t), integrated over the time duration of the epidemic. L in the model can be expressed in relation to directly interpretable parameters: maximum per-plant yield loss (α, typically occurring at t = 0); the decline in per-plant loss as time of infection is delayed (γ; units of time-1); and the parameters that characterize disease progress over time, namely, initial disease incidence (X0), rate of disease increase (r; units of time-1), and maximum (or asymptotic) value of disease incidence (K). Based on the model formulation, L ranges from αX0 to αK and increases with increasing X0, r, K, α, and γ-1. The exact effects of these parameters on L were determined with numerical solutions of the model. The model was expanded to predict L when there was spatial heterogeneity in disease incidence among sites within a field and when maximum per-plant yield loss occurred at a time other than the beginning of the epidemic (t > 0). However, the latter two situations had a major impact on L only at high values of r. The modeling approach was demonstrated by analyzing data on soybean yield loss in relation to infection by Soybean mosaic virus, a member of the genus Potyvirus. Based on model solutions, strategies to reduce or minimize yield losses from a given disease can be evaluated.


Author(s):  
Carlos Edmundo Rodrigues FONTES ◽  
Ana Paula de ABREU ◽  
Aretuza Zaupa GASPARIM

ABSTRACT Background: Researches on Chagas disease still use several animals and rats, due to size and susceptibility were preferred by many authors. Aim: To develop an experimental model of megacolon in rats inoculated with the strain Y of Trypanosoma cruzi. Methods: Thirty male Wistar rats were distributed in three groups inoculated with different inoculants: Group A: 600000, Group B: 1000000 and Group C: 1500000 blood trypomastigotes of T. cruzi. Animals were sedated intramuscularly at zero inoculation time (T0) and 60 days after inoculation (T60), to perform the barium enema in order to evaluate the dilatation of the different segments of colon in a comparative study of the measurements obtained, using a digital caliper. Evidence of infection was performed by blood smear collected from the animal’s tail 18 days after inoculation with observation of blood forms. Results: Comparing the intestinal diameter of the inoculated animals with 60,0000 trypomastigotes in the T0 of infection with T60 days after the inoculation, significant dilatation was observed between the proximal, medial and distal segments (p<0.01), indicating the establishment of the megacolon model. In addition, comparing intestinal diameter between the different segments, with in the T0 of infection and the T60 after inoculation, significant alterations were observed (p<0.05). Conclusion: The proposed model was possible for in vivo studies of alterations due to infection by T. cruzi and functional alterations of the colon. In addition, the changes manifested in the colon are not directly proportional to the size of the inoculum, but to the time of infection that the animals were submitted, since the animals inoculated with 60,0000 blood forms were the ones which presented the most significant alterations.


2016 ◽  
Author(s):  
Natalie E. Dean ◽  
M. Elizabeth Halloran ◽  
Ira M. Longini

AbstractConducting vaccine efficacy trials during outbreaks of emerging pathogens poses particular challenges. The ‘Ebola ça suffit’ trial in Guinea used a novel ring vaccination cluster randomized design to target populations at highest risk of infection. Another key feature of the trial was the use of a delayed vaccination arm as a comparator, in which clusters were randomized to immediate vaccination or vaccination 21 days later. This approach, chosen to improve ethical acceptability of the trial, complicates the statistical analysis as participants in the comparison arm are eventually protected by vaccine. Furthermore, for infectious diseases, we observe time of illness onset and not time of infection, and we may not know the time required for the vaccinee to develop a protective immune response. As a result, including events observed shortly after vaccination may bias the per protocol estimate of vaccine efficacy. We provide a framework for approximating the bias and power of any given per protocol analysis period as functions of the background infection hazard rate, disease incubation period, and vaccine immune response. We use this framework to provide recommendations for designing standard vaccine efficacy trials and trials with a delayed vaccination comparator. Briefly, narrower analysis periods within the correct window can minimize or eliminate bias but may suffer from reduced power. Designs should be reasonably robust to misspecification of the incubation period and time to develop a vaccine immune response.


2003 ◽  
pp. 141-156 ◽  
Author(s):  
Tanja Milijasevic

The study of the parasitic fungus Sphaeropsis sapinea life cycle shows that the conidia disseminate most massively during the period April-May, i. e. during the critical time of infection, but also during the period June-August. Infection can occur through the buds in the spring, before their flushing, but also in the summer of the year of their development. Infection occurs most frequently through the bark of the young shoots, because of which they die while needle infections mostly lead to the so-called localized infections. Both male and female flowers can be infected, as well as the current-year and second-year cones. In some cases this fungus can behave as a latent parasite, i. e. endophyte.


Sign in / Sign up

Export Citation Format

Share Document