Chromatin immunoprecipitation identifies photoreceptor transcription factor targets in mouse models of retinal degeneration: New findings and challenges

2005 ◽  
Vol 22 (5) ◽  
pp. 575-586 ◽  
Author(s):  
GUANG-HUA PENG ◽  
SHIMING CHEN

The transcription factors, Otx2, Crx, Nrl, and Nr2e3, expressed by retinal photoreceptor cells are essential for photoreceptor gene expression, development, and maintenance. Malfunction of any of these factors due to genetic mutations causes photoreceptor disease. Protein–protein interaction studies suggest that these factors may form a regulatory network centered on Crx. To understand how these factors regulate photoreceptor gene transcription in vivo, we have employed chromatin immunoprecipitation (ChIP) assays to assess the ability of these proteins to bind to regulatory sequences of photoreceptor genes in the retina of wild-type and mutant mice with photoreceptor degeneration. This paper summarizes the advantages and limitations of ChIP, using examples from our studies to demonstrate how this technique has contributed to our understanding of the regulation of photoreceptor gene expression. We report that Crx, Otx2, Nrl, and Nr2e3 co-occupy the promoter/enhancer, but not the region 3′ of selected Crx target genes, in a retina-specific fashion. We identified Crx-dependent (Nr2e3) and Crx-independent (Otx2 and Nrl) target binding using Crx knockout mice (Crx−/−), suggesting that individual factors may use distinct mechanism(s) for binding and regulating target genes. Consistent with ChIP results, we also found that Otx2, a close family member of Crx, can activate the promoter of rod and cone genes in HEK293 cells, implicating Otx2 in regulating photoreceptor gene expression. These findings provide important information for understanding how photoreceptor transcription factors regulate photoreceptor gene expression and the mechanisms by which mutations in these factors cause transcriptional dysregulation and photoreceptor degeneration.

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 372 ◽  
Author(s):  
Delasa Aghamirzaie ◽  
Karthik Raja Velmurugan ◽  
Shuchi Wu ◽  
Doaa Altarawy ◽  
Lenwood S. Heath ◽  
...  

Motivation: The increasing availability of chromatin immunoprecipitation sequencing (ChIP-Seq) data enables us to learn more about the action of transcription factors in the regulation of gene expression. Even though in vivo transcriptional regulation often involves the concerted action of more than one transcription factor, the format of each individual ChIP-Seq dataset usually represents the action of a single transcription factor. Therefore, a relational database in which available ChIP-Seq datasets are curated is essential. Results: We present Expresso (database and webserver) as a tool for the collection and integration of available Arabidopsis ChIP-Seq peak data, which in turn can be linked to a user’s gene expression data. Known target genes of transcription factors were identified by motif analysis of publicly available GEO ChIP-Seq data sets. Expresso currently provides three services: 1) Identification of target genes of a given transcription factor; 2) Identification of transcription factors that regulate a gene of interest; 3) Computation of correlation between the gene expression of transcription factors and their target genes. Availability: Expresso is freely available at http://bioinformatics.cs.vt.edu/expresso/


2016 ◽  
Vol 113 (13) ◽  
pp. E1835-E1843 ◽  
Author(s):  
Mina Fazlollahi ◽  
Ivor Muroff ◽  
Eunjee Lee ◽  
Helen C. Causton ◽  
Harmen J. Bussemaker

Regulation of gene expression by transcription factors (TFs) is highly dependent on genetic background and interactions with cofactors. Identifying specific context factors is a major challenge that requires new approaches. Here we show that exploiting natural variation is a potent strategy for probing functional interactions within gene regulatory networks. We developed an algorithm to identify genetic polymorphisms that modulate the regulatory connectivity between specific transcription factors and their target genes in vivo. As a proof of principle, we mapped connectivity quantitative trait loci (cQTLs) using parallel genotype and gene expression data for segregants from a cross between two strains of the yeast Saccharomyces cerevisiae. We identified a nonsynonymous mutation in the DIG2 gene as a cQTL for the transcription factor Ste12p and confirmed this prediction empirically. We also identified three polymorphisms in TAF13 as putative modulators of regulation by Gcn4p. Our method has potential for revealing how genetic differences among individuals influence gene regulatory networks in any organism for which gene expression and genotype data are available along with information on binding preferences for transcription factors.


2004 ◽  
Vol 279 (50) ◽  
pp. 52183-52190 ◽  
Author(s):  
Pascale Jackers ◽  
Gabor Szalai ◽  
Omar Moussa ◽  
Dennis K. Watson

Megakaryopoiesis is the process by which hematopoietic stem cells in the bone marrow differentiate into mature megakaryocytes. The expression of megakaryocytic genes during megakaryopoiesis is controlled by specific transcription factors. Fli-1 and GATA-1 transcription factors are required for development of megakaryocytes and promoter analysis has definedin vitrofunctional binding sites for these factors in several megakaryocytic genes, includingGPIIb,GPIX, andC-MPL. Herein, we utilize chromatin immunoprecipitation to examine the presence of Ets-1, Fli-1, and GATA-1 on these promotersin vivo. Fli-1 and Ets-1 occupy the promoters ofGPIIb,GPIX, andC-MPLgenes in both Meg-01 and CMK11-5 cells. WhereasGPIIbis expressed in both Meg-01 and CMK11-5 cells,GPIXandC-MPLare only expressed in the more differentiated CMK11–5 cells. Thus,in vivooccupancy by an Ets factor is not sufficient to promote transcription of some megakaryocytic genes. GATA-1 and Fli-1 are both expressed in CMK11-5 cells and co-occupy theGPIXandC-MPLpromoters. Transcription of all three megakaryocytic genes is correlated with the presence of acetylated histone H3 and phosphorylated RNA polymerase II on their promoters. We also show that exogenous expression of GATA-1 in Meg-01 cells leads to the expression of endogenous c-mpl and gpIX mRNA. WhereasGPIIb,GPIX, andC-MPLare direct target genes for Fli-1, both Fli-1 and GATA-1 are required for formation of an active transcriptional complex on theC-MPLandGPIXpromotersin vivo. In contrast,GPIIbexpression appears to be independent of GATA-1 in Meg-01 cells.


2019 ◽  
Author(s):  
Qiong Zhang

Transcription factors (TFs) as key regulators play crucial roles in biological processes. The identification of TF-target regulatory relationships is a key step for revealing functions of TFs and their regulations on gene expression. The accumulated data of Chromatin immunoprecipitation sequencing (ChIP-Seq) provides great opportunities to discover the TF-target regulations across different conditions. In this study, we constructed a database named hTFtarget, which integrated huge human TF target resources (7,190 ChIP-Seq samples of 659 TFs and high confident TF binding sites of 699 TFs) and epigenetic modification information to predict accurate TF-target regulations. hTFtarget offers the following functions for users to explore TF-target regulations: 1) Browse or search general targets of a query TF across datasets; 2) Browse TF-target regulations for a query TF in a specific dataset or tissue; 3) Search potential TFs for a given target gene or ncRNA; 4) Investigate co-association between TFs in cell lines; 5) Explore potential co-regulations for given target genes or TFs; 6) Predict candidate TFBSs on given DNA sequences; 7) View ChIP-Seq peaks for different TFs and conditions in genome browser. hTFtarget provides a comprehensive, reliable and user-friendly resource for exploring human TF-target regulations, which will be very useful for a wide range of users in the TF and gene expression regulation community. hTFtarget is available at http://bioinfo.life.hust.edu.cn/hTFtarget.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 36-36
Author(s):  
Jessica M Salmon ◽  
Casie Leigh Reed ◽  
Maddyson Bender ◽  
Helen Lorraine Mitchell ◽  
Vanessa Fox ◽  
...  

Krüppel-like factors (KLFs) are a family of transcription factors that play essential roles in the development and differentiation of the hematopoietic system. These transcription factors possess highly conserved C-terminal zinc-finger motifs, which enable their binding to GC-rich, or CACC-box, motifs in promoter and enhancer regions of target genes. The N-terminal domains of these proteins are more varied and mediate the recruitment of various co-factors, which can form a complex with either activator or repressor function. Acting primarily as a gene repressor through its recruitment of CtBPs and histone deacetylases (HDACs) [1], we have recently shown that KLF3 competes with KLF1 bound sites in the genome to repress gene expression during erythropoiesis [2]. However, the function of Klf3 in other lineages has been less well studied. This widely expressed transcription factor has reported roles in the differentiation of marginal zone B cells, eosinophil function and inflammation [3]. We utilised the Klf3-null mouse model [4] to more closely examine the role of Klf3 in innate inflammatory cells. These mice exhibit elevated white cell counts, including monocytes (Figure 1A), and inflammation of the skin. Conditional knockout of Klf4 in myeloid cells leads to a deficiency of inflammatory macrophages [5]. To test our hypothesis KLF3 normally represses inflammation, perhaps by antagonising the action of KLF4, bone-marrow derived macrophages (BMDM) were generated from wild-type or Klf3-null mice and stimulated with the bacterial toxin lipopolysaccharide (LPS). In wild type BMDM, LPS induces Klf3 gene expression and activation then delayed repression of target genes such as Lgals3 (galectin-3) over a 21 hour time course (Figure 1B). Quantitative real-time PCR and mRNA-seq of WT v Klf3-null macrophages identified ~100 differentially expressed genes involved in proliferation, macrophage activation and inflammation. We transduced the monocyte cell line, RAW264.7 (that expresses Klf4, Klf3 and Klf2), with a retroviral vector expressing a tamoxifen-inducible KLF3-ER fusion construct. KLF3 induced cell cycle arrest and macrophage differentiation. We will report on KLF3-induced gene expression changes (repression and activation), and ChIP-seq for KLF3, in RAW cells. The results shed light on the mechanism by which KLF3 normally represses monocyte/macrophage responses to infection. This study highlights the importance of key transcriptional regulators that tightly control gene expression during inflammation. Loss of Klf3 leads to alterations in this process, resulting in hyper-activation of inflammatory macrophages, increased white cell counts and inflammation of the skin. A greater knowledge of the inflammatory process and how it is regulated is important for our understanding of acute infection and inflammatory disease. Further studies are planned to investigate the role of the KLF3 transcription factor in response to inflammation in vivo. References: 1. Pearson, R., et al., Kruppel-like transcription factors: A functional family. Int J Biochem Cell Biol, 2007. W2. Ilsley, M.D., et al., Kruppel-like factors compete for promoters and enhancers to fine-tune transcription. Nucleic Acids Res, 2017. 45(11): p. 6572-6588. W3. Knights, A.J., et al., Kruppel-like factor 3 (KLF3) suppresses NF-kappaB-driven inflammation in mice. J Biol Chem, 2020. 295(18): p. 6080-6091. W4. Sue, N., et al., Targeted disruption of the basic Kruppel-like factor gene (Klf3) reveals a role in adipogenesis. Mol Cell Biol, 2008. 28(12): p. 3967-78. W5. Alder, J.K., et al., Kruppel-like factor 4 is essential for inflammatory monocyte differentiation in vivo. J Immunol, 2008. 180(8): p. 5645-52. Figure 1: Elevated WCC (A) and inflammatory markers (B) in BMDM after LPS stimulation. 1. Total WCC in adult mice (3-6 months old) of the indicated genotypes. There is a statistically significant increase in the WCC in Klf3-/- v wild type mice (P<0.001 by student's t test). B. Time course (hours) after LPS stimulation of confluent BMDM. Klf3 is induced 3-fold by LPS and KLF3-target genes such as Lgals3 are not fully repressed by 21 hours in knockout mice. Figure 1 Disclosures Perkins: Novartis Oncology: Honoraria, Membership on an entity's Board of Directors or advisory committees.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Kangmei Zhao ◽  
Deze Kong ◽  
Benjamin Jin ◽  
Christina D Smolke ◽  
Seung Yon Rhee

Temporal dynamics of gene expression underpin responses to internal and environmental stimuli. In eukaryotes, regulation of gene induction includes changing chromatin states at target genes and recruiting the transcriptional machinery that includes transcription factors. As one of the most potent defense compounds in Arabidopsis thaliana, camalexin can be rapidly induced by bacterial and fungal infections. Though several transcription factors controlling camalexin biosynthesis genes have been characterized, how the rapid activation of genes in this pathway upon a pathogen signal is enabled remains unknown. By combining publicly available epigenomic data with in vivo chromatin modification mapping, we found that camalexin biosynthesis genes are marked with two epigenetic modifications with opposite effects on gene expression, H3K27me3 (repression) and H3K18ac (activation), to form a previously uncharacterized type of bivalent chromatin. Mutants with reduced H3K27m3 or H3K18ac suggested that both modifications were required to determine the timing of gene expression and metabolite accumulation at an early stage of the stress response. Our study indicates that the H3K27me3-H3K18ac bivalent chromatin, which we name a kairostat, plays an important role controlling the timely induction of gene expression upon stimuli in plants.


2005 ◽  
Vol 83 (4) ◽  
pp. 535-547 ◽  
Author(s):  
Gareth N Corry ◽  
D Alan Underhill

To date, the majority of the research regarding eukaryotic transcription factors has focused on characterizing their function primarily through in vitro methods. These studies have revealed that transcription factors are essentially modular structures, containing separate regions that participate in such activities as DNA binding, protein–protein interaction, and transcriptional activation or repression. To fully comprehend the behavior of a given transcription factor, however, these domains must be analyzed in the context of the entire protein, and in certain cases the context of a multiprotein complex. Furthermore, it must be appreciated that transcription factors function in the nucleus, where they must contend with a variety of factors, including the nuclear architecture, chromatin domains, chromosome territories, and cell-cycle-associated processes. Recent examinations of transcription factors in the nucleus have clarified the behavior of these proteins in vivo and have increased our understanding of how gene expression is regulated in eukaryotes. Here, we review the current knowledge regarding sequence-specific transcription factor compartmentalization within the nucleus and discuss its impact on the regulation of such processes as activation or repression of gene expression and interaction with coregulatory factors.Key words: transcription, subnuclear localization, chromatin, gene expression, nuclear architecture.


2020 ◽  
Vol 295 (39) ◽  
pp. 13617-13629
Author(s):  
Clément Immarigeon ◽  
Sandra Bernat-Fabre ◽  
Emmanuelle Guillou ◽  
Alexis Verger ◽  
Elodie Prince ◽  
...  

The evolutionarily conserved multiprotein Mediator complex (MED) serves as an interface between DNA-bound transcription factors (TFs) and the RNA Pol II machinery. It has been proposed that each TF interacts with a dedicated MED subunit to induce specific transcriptional responses. But are these binary partnerships sufficient to mediate TF functions? We have previously established that the Med1 Mediator subunit serves as a cofactor of GATA TFs in Drosophila, as shown in mammals. Here, we observe mutant phenotype similarities between another subunit, Med19, and the Drosophila GATA TF Pannier (Pnr), suggesting functional interaction. We further show that Med19 physically interacts with the Drosophila GATA TFs, Pnr and Serpent (Srp), in vivo and in vitro through their conserved C-zinc finger domains. Moreover, Med19 loss of function experiments in vivo or in cellulo indicate that it is required for Pnr- and Srp-dependent gene expression, suggesting general GATA cofactor functions. Interestingly, Med19 but not Med1 is critical for the regulation of all tested GATA target genes, implying shared or differential use of MED subunits by GATAs depending on the target gene. Lastly, we show a direct interaction between Med19 and Med1 by GST pulldown experiments indicating privileged contacts between these two subunits of the MED middle module. Together, these findings identify Med19/Med1 as a composite GATA TF interface and suggest that binary MED subunit–TF partnerships are probably oversimplified models. We propose several mechanisms to account for the transcriptional regulation of GATA-targeted genes.


2020 ◽  
Vol 86 (9) ◽  
Author(s):  
Gaili Fan ◽  
Huawei Zheng ◽  
Kai Zhang ◽  
Veena Devi Ganeshan ◽  
Stephen Obol Opiyo ◽  
...  

ABSTRACT The homeobox gene family of transcription factors (HTF) controls many developmental pathways and physiological processes in eukaryotes. We previously showed that a conserved HTF in the plant-pathogenic fungus Fusarium graminearum, Htf1 (FgHtf1), regulates conidium morphology in that organism. This study investigated the mechanism of FgHtf1-mediated regulation and identified putative FgHtf1 target genes by a chromatin immunoprecipitation assay combined with parallel DNA sequencing (ChIP-seq) and RNA sequencing. A total of 186 potential binding peaks, including 142 genes directly regulated by FgHtf1, were identified. Subsequent motif prediction analysis identified two DNA-binding motifs, TAAT and CTTGT. Among the FgHtf1 target genes were FgHTF1 itself and several important conidiation-related genes (e.g., FgCON7), the chitin synthase pathway genes, and the aurofusarin biosynthetic pathway genes. In addition, FgHtf1 may regulate the cAMP-protein kinase A (PKA)-Msn2/4 and Ca2+-calcineurin-Crz1 pathways. Taken together, these results suggest that, in addition to autoregulation, FgHtf1 also controls global gene expression and promotes a shift to aerial growth and conidiation in F. graminearum by activation of FgCON7 or other conidiation-related genes. IMPORTANCE The homeobox gene family of transcription factors is known to be involved in the development and conidiation of filamentous fungi. However, the regulatory mechanisms and downstream targets of homeobox genes remain unclear. FgHtf1 is a homeobox transcription factor that is required for phialide development and conidiogenesis in the plant pathogen F. graminearum. In this study, we identified FgHtf1-controlled target genes and binding motifs. We found that, besides autoregulation, FgHtf1 also controls global gene expression and promotes conidiation in F. graminearum by activation of genes necessary for aerial growth, FgCON7, and other conidiation-related genes.


2020 ◽  
Author(s):  
René L. Vidal ◽  
Denisse Sepulveda ◽  
Paulina Troncoso-Escudero ◽  
Paula Garcia-Huerta ◽  
Constanza Gonzalez ◽  
...  

AbstractAlteration to endoplasmic reticulum (ER) proteostasis is observed on a variety of neurodegenerative diseases associated with abnormal protein aggregation. Activation of the unfolded protein response (UPR) enables an adaptive reaction to recover ER proteostasis and cell function. The UPR is initiated by specialized stress sensors that engage gene expression programs through the concerted action of the transcription factors ATF4, ATF6f, and XBP1s. Although UPR signaling is generally studied as unique linear signaling branches, correlative evidence suggests that ATF6f and XBP1s may physically interact to regulate a subset of UPR-target genes. Here, we designed an ATF6f-XBP1s fusion protein termed UPRplus that behaves as a heterodimer in terms of its selective transcriptional activity. Cell-based studies demonstrated that UPRplus has stronger an effect in reducing the abnormal aggregation of mutant huntingtin and alpha-synuclein when compared to XBP1s or ATF6 alone. We developed a gene transfer approach to deliver UPRplus into the brain using adeno-associated viruses (AAVs) and demonstrated potent neuroprotection in vivo in preclinical models of Parkinson’s and Huntington’s disease. These results support the concept where directing UPR-mediated gene expression toward specific adaptive programs may serve as a possible strategy to optimize the beneficial effects of the pathway in different disease conditions.


Sign in / Sign up

Export Citation Format

Share Document