scholarly journals Handedness and corpus callosal morphology in Williams syndrome

2013 ◽  
Vol 25 (1) ◽  
pp. 253-260 ◽  
Author(s):  
Marilee A. Martens ◽  
Sarah J. Wilson ◽  
Jian Chen ◽  
Amanda G. Wood ◽  
David C. Reutens

AbstractWilliams syndrome is a neurodevelopmental genetic disorder caused by a hemizygous deletion on chromosome 7q11.23, resulting in atypical brain structure and function, including abnormal morphology of the corpus callosum. An influence of handedness on the size of the corpus callosum has been observed in studies of typical individuals, but handedness has not been taken into account in studies of callosal morphology in Williams syndrome. We hypothesized that callosal area is smaller and the size of the splenium and isthmus is reduced in individuals with Williams syndrome compared to healthy controls, and examined age, sex, and handedness effects on corpus callosal area. Structural magnetic resonance imaging scans were obtained on 25 individuals with Williams syndrome (18 right-handed, 7 left-handed) and 25 matched controls. We found that callosal thickness was significantly reduced in the splenium of Williams syndrome individuals compared to controls. We also found novel evidence that the callosal area was smaller in left-handed participants with Williams syndrome than their right-handed counterparts, with opposite findings observed in the control group. This novel finding may be associated with LIM-kinase hemizygosity, a characteristic of Williams syndrome. The findings may have significant clinical implications in future explorations of the Williams syndrome cognitive phenotype.

Perception ◽  
10.1068/p6050 ◽  
2009 ◽  
Vol 38 (5) ◽  
pp. 694-701 ◽  
Author(s):  
Alastair D Smith ◽  
Iain D Gilchrist ◽  
Bruce Hood ◽  
May Tassabehji ◽  
Annette Karmiloff-Smith

Williams syndrome (WS) is a genetic disorder associated with impairments of spatial cognition. This has primarily been studied in small-scale space, and rarely in large-scale environments. In order to fully characterise the spatial deficits in WS, and also to address claims that the deletion of LIM-kinase 1 (LIMK1) on chromosome 7 is responsible for those deficits, we report an automated large-scale search task for humans that places the participant egocentrically within the search space. Search locations were defined as lights and switches embedded in the floor, and participants attempted to locate a hidden target by pressing the switch at potential locations. We compared individuals with WS to patients with smaller deletions (including LIMK1) in the critical region on chromosome 7. Whilst partial-deletion participants performed efficiently on the task, participants with WS demonstrated inefficient search profiles: their search slopes were steeper and they made significantly more erroneous revisits to previously inspected locations. Our findings indicate that spatial deficits associated with WS also affect large-scale spatial processing and suggest that hemizygous deletion of LIMK1 is not sufficient to account for any of the spatial deficits associated with WS.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Chia-Chun Hung ◽  
Yi-Hsuan Liu ◽  
Chu-Chung Huang ◽  
Cheng-Ying Chou ◽  
Chun-Ming Chen ◽  
...  

Abstract Ketamine has been used for medical purposes, most typically as an anesthetic, and recent studies support its use in the treatment of depression. However, ketamine tends to be abused by adolescents and young adults. In the current study, we examined the effects of early ketamine exposure on brain structure and function. We employed MRI to assess the effects of ketamine abuse on cerebral gray matter volume (GMV) and functional connectivity (FC) in 34 users and 19 non-users, employing covariates. Ketamine users were categorized as adolescent-onset and adult-onset based on when they were first exposed to ketamine. Imaging data were processed by published routines in SPM and AFNI. The results revealed lower GMV in the left precuneus in ketamine users, with a larger decrease in the adolescent-onset group. The results from a seed-based correlation analysis show that both ketamine groups had higher functional connectivity between left precuneus (seed) and right precuneus than the control group. Compared to controls, ketamine users showed decreased GMV in the right insula, left inferior parietal lobule, left dorsolateral prefrontal cortex/superior frontal gyrus, and left medial orbitofrontal cortex. These preliminary results characterize the effects of ketamine misuse on brain structure and function and highlight the influence of earlier exposure to ketamine on the development of the brain. The precuneus, a structure of central importance to cerebral functional organization, may be particularly vulnerable to the influences of early ketamine exposure. How these structural and functional brain changes may relate to the cognitive and affective deficits remains to be determined with a large cohort of participants.


2012 ◽  
Vol 15 (3) ◽  
pp. 315-323 ◽  
Author(s):  
Kimberley A. Phillips ◽  
Jeffrey Rogers ◽  
Elizabeth A. Barrett ◽  
David C. Glahn ◽  
Peter Kochunov

The degree to which genes and environment determine variations in brain structure and function is fundamentally important to understanding normal and disease-related patterns of neural organization and activity. We studied genetic contributions to the midsagittal area of the corpus callosum (CC) in pedigreed baboons (68 males, 112 females) to replicate findings of high genetic contribution to that area of the CC reported in humans, and to determine if the heritability of the CC midsagittal area in adults was modulated by fetal development rate. Measurements of callosal area were obtained from high-resolution MRI scans. Heritability was estimated from pedigree-based maximum likelihood estimation of genetic and non-genetic variance components as implemented in Sequential Oligogenic Linkage Analysis Routines (SOLAR). Our analyses revealed significant heritability for the total area of the CC and all of its subdivisions, with h2 = .46 for the total CC, and h2 = .54, .37, .62, .56, and .29 for genu, anterior midbody, medial midbody, posterior midbody and splenium, respectively. Genetic correlation analysis demonstrated that the individual subdivisions shared between 41% and 98% of genetic variability. Combined with previous research reporting high heritability of other brain structures in baboons, these results reveal a consistent pattern of high heritability for brain morphometric measures in baboons.


2020 ◽  
Author(s):  
Rachel R. Romeo ◽  
Julia A. Leonard ◽  
Hannah M. Grotzinger ◽  
Sydney T. Robinson ◽  
Megumi E. Takada ◽  
...  

AbstractChildren’s early language environments are associated with linguistic, cognitive, and academic development, as well as concurrent brain structure and function. This study investigated neurodevelopmental mechanisms linking language input and development by measuring neuroplasticity associated with an intervention designed to enhance language environments in lower-income families. Families of 52 4-to-6 year-old children were randomly assigned to a 9-week, interactive, family-based intervention or no-contact control group. Children completed pre- and post-assessments of verbal and nonverbal cognition, structural magnetic resonance imaging, and two days of auditory recordings to measure language exposure. Families who completed the intervention exhibited a greater increase in the number of adult-child conversational turns. Turn-taking changes correlated positively with changes in verbal, nonverbal, and executive functioning measures, as well as cortical thickening in left inferior frontal and supramarginal gyri, the latter of which mediated the relationship between changes in conversational turns and language scores. This is the first study to investigate longitudinal neuroplasticity in response to changes in children’s language environments and suggests that conversational turns support language development through cortical growth in language and social processing regions. This has implications for early interventions to enhance young children’s language environments, including family-support programs and addressing systemic barriers to family communication.


2017 ◽  
Vol 48 (6) ◽  
pp. 1034-1046 ◽  
Author(s):  
L. Lim ◽  
H. Hart ◽  
M. Mehta ◽  
A. Worker ◽  
A. Simmons ◽  
...  

BackgroundChildhood abuse is associated with abnormalities in brain structure and function. Few studies have investigated abuse-related brain abnormalities in medication-naïve, drug-free youth that also controlled for psychiatric comorbidities by inclusion of a psychiatric control group, which is crucial to disentangle the effects of abuse from those associated with the psychiatric conditions.MethodsCortical volume (CV), cortical thickness (CT) and surface area (SA) were measured in 22 age- and gender-matched medication-naïve youth (aged 13–20) exposed to childhood abuse, 19 psychiatric controls matched for psychiatric diagnoses and 27 healthy controls. Both region-of-interest (ROI) and whole-brain analyses were conducted.ResultsFor the ROI analysis, the childhood abuse group compared with healthy controls only, had significantly reduced CV in bilateral cerebellum and reduced CT in left insula and right lateral orbitofrontal cortex (OFC). At the whole-brain level, relative to healthy controls, the childhood abuse group showed significantly reduced CV in left lingual, pericalcarine, precuneus and superior parietal gyri, and reduced CT in left pre-/postcentral and paracentral regions, which furthermore correlated with greater abuse severity. They also had increased CV in left inferior and middle temporal gyri relative to healthy controls. Abnormalities in the precuneus, temporal and precentral regions were abuse-specific relative to psychiatric controls, albeit at a more lenient level. Groups did not differ in SA.ConclusionsChildhood abuse is associated with widespread structural abnormalities in OFC–insular, cerebellar, occipital, parietal and temporal regions, which likely underlie the abnormal affective, motivational and cognitive functions typically observed in this population.


2020 ◽  
Vol 8 (3) ◽  
pp. 103-112
Author(s):  
Atefeh SADEGHI SHERMEH ◽  
Majid KHOSHMIRSAFA ◽  
Ali-Akbar DELBANDI ◽  
Payam TABARSI ◽  
Esmaeil MORTAZ ◽  
...  

Introduction: Tuberculosis (TB) and especially resistant forms of it have a substantial economic burden on the community health system for diagnosis and treatment each year. Thus, investigation of this field is a priority for the world health organization (WHO). Cytokines play important roles in the relationship between the immune system and tuberculosis. Genetic variations especially single nucleotide polymorphisms (SNPs) impact cytokine levels and function against TB. Material and Methods: In this research SNPs in IFN-γ (+874 T/A) and IL-10 (-592 A/C) genes, and the effects of these SNPs on cytokine levels in a total of 87 tuberculosis patients and 100 healthy controls (HCs) were studied. TB patients divided into two groups: 1) 67 drug-sensitive (DS-TB) and 2) 20 drug-resistant (DR-TB) according to drug sensitivity test using polymerase chain reaction (PCR). For the genotyping of two SNPs, the PCR-based method was used and IFN-γ and IL-10 levels were measured by ELISA in pulmonary tuberculosis (PTB) and control group. Results: In -592A/C SNP, only two genotypes (AA, AC) were observed and both genotypes showed statistically significant differences between DR-TB and HCs (p=0.011). IL-10 serum levels in PTB patients were higher than HCs (p=0.02). The serum levels of IFN-γ were significantly higher in DS-TB patients than that of the other two groups (p<0.001); however, no significant differences were observed for allele and genotype frequencies in IFN-γ +874. Conclusions: Our results suggest that the SNP at -592 position of IL-10 gene may be associated with the susceptibility to DR-TB. However, further investigation is necessary. Keywords: Polymorphism, IFN-γ, IL-10, tuberculosis, drug-resistant tuberculosis


2019 ◽  
Author(s):  
Elisabeth A. Wilde ◽  
Emily L. Dennis ◽  
David F Tate

The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) consortium brings together researchers from around the world to try to identify the genetic underpinnings of brain structure and function, along with robust, generalizable effects of neurological and psychiatric disorders. The recently-formed ENIGMA Brain Injury working group includes 8 subgroups, based largely on injury mechanism and patient population. This introduction to the special issue summarizes the history, organization, and objectives of ENIGMA Brain Injury, and includes a discussion of strategies, challenges, opportunities and goals common across 6 of the subgroups under the umbrella of ENIGMA Brain Injury. The following articles in this special issue, including 6 articles from different subgroups, will detail the challenges and opportunities specific to each subgroup.


Author(s):  
Nabil A. Khouri ◽  
Haytham M. Daradka ◽  
Mohammed Z. Allouh ◽  
Ahmad S. Alkofahi

Abstract: The effects of: Both plants were administered orally to two separate mice groups at a dose of 800 mg/kg/day for 35 days and compared with control group. After treatment, 5 mice of each group were sacrificed and total mice weights, reproductive organs’ weights, spermatogenesis, and androgenic serum markers were investigated. The remaining mice from all groups were allowed to mate with virgin female mice to explore male fertility potential.: Results indicated that body and organs’ weights were increased significantly in mice treated with: We can conclude that


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Dong Wang ◽  
Caixia Liu ◽  
Xinyu Liu ◽  
Ying Zhang ◽  
Yu Wang

Abstract Background Due to metabolic changes in the second trimester and the increasing number of pregnant women with obesity and advanced maternal age, the incidence of gestational diabetes mellitus (GDM) remains high. This study aimed to evaluate the effects of GDM on fetal cardiac morphology and function, and to determine whether these changes increase with increasing estimated fetal weight (EFW). Methods Fifty-eight women with GDM (GDM group) and 58 women with a healthy pregnancy (control group) were included in this prospective observational cohort study. Each group included subgroups of 31 pregnant women with a gestational age between 24+0 weeks and 27+6 weeks as well as 27 pregnant women with a gestational age between 28+0 weeks and 40+0 weeks. For all fetuses, a cine of 2–3 s in the four-chamber view was obtained, and online speckle-tracking analysis was performed using the GE Automatic Fetal Heart Assessment Tool (fetal HQ; General Electric Healthcare Ultrasound, Zipf, Austria) to measure the global sphericity index (GSI), global longitudinal strain (GLS), fractional area change (FAC), 24-segment sphericity index (SI), and 24-segment end-diastolic diameter of the left ventricle (LV) and right ventricle (RV). Data were analyzed using the independent t-test and Wilcoxon rank-sum test, as applicable. Results The GDM group (mean HbA1c value was 5.3 ± 0.57 mmol/L) showed a lower GSI value than the control group (1.21 vs. 1.27, P = 0.000), which indicated a rounder shape of the heart. In addition, fetuses in the GDM group demonstrated significant impairment in cardiac function compared to those in the control group (LV-GLS: -18.26% vs. -22.70%, RV-GLS: -18.52% vs. -22.74%, LV-FAC: 35.30% vs. 42.36%, RV-FAC: 30.89% vs. 36.80%; P = 0.000 for all). Subgroup analyses according to gestational age (24+0–27+6 weeks and 28+0–40+0 weeks) showed that the statistical differences were retained between the GDM and control groups in each subgroup. Conclusions Fetuses of women with GDM present with signs of biventricular systolic dysfunction according to deformation analysis using fetal HQ. Additionally, the heart had a rounder shape in the GDM group than in the control group. This study showed that fetal HQ can be used to assess fetal cardiac morphology and function easily and quickly, and the effects of GDM on fetal cardiac morphology and function appeared from the second trimester. Thus, whether earlier and stricter clinical intervention was necessary remained to be further studied. Furthermore, future studies will need to supplement the effects of blood glucose levels on GLS, FAC, GSI, and 24-segment SI. Additionally, the long-term follow-up after birth should also be improved to observe the influence of changes in the indicators on the prognosis.


Sign in / Sign up

Export Citation Format

Share Document