Introduction

2002 ◽  
Vol 13 (2) ◽  
pp. 265-265
Author(s):  
William R. Fowler ◽  
Molly Morgan

In this issue's Special Section we offer the second part of a group of studies dealing with the impact of climate change on ancient Maya civilization. As mentioned in the Introduction to the first part (Fowler 2002), Mayanists have been aware of the possible effects of climatic factors on Maya culture since the early decades of last century. At first, comments on the effects of climate change in the Maya area were largely speculative. By the 1980s such work became increasingly compelling and sophisticated, including correlations of worldwide glacial, palynological, and other climatological data, as reflected in several publications (Dahlin 1983; Folan et al. 1983; Gunn and Adams 1981). Soon after, Lewis Messenger provided a broad global correlation with specific reference to archaeological sequences in Mesoamerica and the Maya area (Messenger 1990). Perhaps it would be fair to say that Maya paleoclimatological studies may have peaked with the massive work of Richardson Gill (2000), which has attracted much critical attention. David Webster (2002:241–247), for example, praises the book for its directness and clarity of purpose but expresses skepticism about the climatological bias and stresses that much more research is needed.

2002 ◽  
Vol 13 (1) ◽  
pp. 77-78 ◽  
Author(s):  
William R. Fowler

In this issue's Special Section we present the first of a two-part series on studies of ancient climate change in the Maya area. Since the time of Ellsworth Huntington (1917, 1924) and Karl Sapper (1931), Mesoamericanists and Mayanists in particular have been aware of the possibility that climate change played a role in the fortunes of ancient Maya civilization.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 172
Author(s):  
Yuan Xu ◽  
Jieming Chou ◽  
Fan Yang ◽  
Mingyang Sun ◽  
Weixing Zhao ◽  
...  

Quantitatively assessing the spatial divergence of the sensitivity of crop yield to climate change is of great significance for reducing the climate change risk to food production. We use socio-economic and climatic data from 1981 to 2015 to examine how climate variability led to variation in yield, as simulated by an economy–climate model (C-D-C). The sensitivity of crop yield to the impact of climate change refers to the change in yield caused by changing climatic factors under the condition of constant non-climatic factors. An ‘output elasticity of comprehensive climate factor (CCF)’ approach determines the sensitivity, using the yields per hectare for grain, rice, wheat and maize in China’s main grain-producing areas as a case study. The results show that the CCF has a negative trend at a rate of −0.84/(10a) in the North region, while a positive trend of 0.79/(10a) is observed for the South region. Climate change promotes the ensemble increase in yields, and the contribution of agricultural labor force and total mechanical power to yields are greater, indicating that the yield in major grain-producing areas mainly depends on labor resources and the level of mechanization. However, the sensitivities to climate change of different crop yields to climate change present obvious regional differences: the sensitivity to climate change of the yield per hectare for maize in the North region was stronger than that in the South region. Therefore, the increase in the yield per hectare for maize in the North region due to the positive impacts of climate change was greater than that in the South region. In contrast, the sensitivity to climate change of the yield per hectare for rice in the South region was stronger than that in the North region. Furthermore, the sensitivity to climate change of maize per hectare yield was stronger than that of rice and wheat in the North region, and that of rice was the highest of the three crop yields in the South region. Finally, the economy–climate sensitivity zones of different crops were determined by the output elasticity of the CCF to help adapt to climate change and prevent food production risks.


2021 ◽  
Author(s):  
Giovanna Battipaglia ◽  
Francesco Niccoli ◽  
Arturo Pacheco-Solana

<p>Climate-induced forest mortality is a critical issue in the Mediterranean basin, with major consequences for the functioning of these key ecosystems. Indeed, in Mediterranean ecosystems, where water stress is already the most limiting factor for tree performance, climatic changes are expected to entail an increase in water deficit. In this context, annual growth rings can provide short- (e.g., years) and long-term (e.g., decades) information on how trees respond to drought events. With climate change, <em>Pinus pinaster</em> and <em>Pinus pinea</em> L. are expected to reduce their distribution range in the region, being displaced at low altitudes by more drought tolerant taxa such as sub Mediterranean <em>Quercus</em> spp.</p><p>This study aims was to assess the physiological response of <em>Pinus</em> and <em>Quercus</em> species growing in the Vesuvio National park, located in Southern Italy and where an increase of temperature and drought events has been recorded in the recent years. Our preliminary results underlined the importance of temperature on the tree ring width of all the analyses species. The high temperatures can cause a change in the constant kinetics of the RuBisCo, leading to a consequent decrease in carboxylation rate and thus to a reduction in tree growth. On the other hand, also precipitation seemed to affect the growth of the sampled trees: indeed, in all the chronologies a reduction in growth was found after particular dry years: for example, the low rainfall in 1999 (455 mm/year) determined a drastic decline in growth in 2000 in all the species. In addition to the climatic factors, competition can also play an important role in the growth rate: dendrochronological analyzes have highlighted how stand specific properties (i.e. density, structure and composition) can influence individual tree responses to drought events. The knowledge of those researches should be integrated into sustainable forest management strategies to minimize the potential impacts of climate change on forest ecosystems.</p>


Author(s):  
Kenneth Ofori-Boateng ◽  
Baba Insah

Purpose – The study aimed at examining the current and future impact of climate change on cocoa production in West Africa. Design/methodology/approach – A translog production function based on crop yield response framework was used. A panel model was estimated using data drawn from cocoa-producing countries in West Africa. An in-sample simulation was used to determine the predictive power of the model. In addition, an out-sample simulation revealed the effect of future trends of temperature and precipitation on cocoa output. Findings – Temperature and precipitation play a considerable role in cocoa production in West Africa. It was established that extreme temperature adversely affected cocoa output in the sub-region. Furthermore, increasing temperature and declining precipitation trends will reduce cocoa output in the future. Practical implications – An important implication of this study is the recognition that lagging effects are the determinants of cocoa output and not coincident effects. This finds support from the agronomic point of view considering the gestation period of the cocoa crop. Originality/value – Although several studies have been carried out in this area, this study modeled and estimated the interacting effects of factors that influence cocoa production. This is closer to reality, as climatic factors and agricultural inputs combine to yield output.


2021 ◽  
Author(s):  
Philip Kuriachen ◽  
Asha Devi ◽  
Anu Susan Sam ◽  
Suresh Kumar ◽  
Jyoti Kumari ◽  
...  

Abstract Climate change and consequent variations in temperature pose a significant challenge for sustaining wheat production systems globally. In this study, the potential impact of rising temperature on wheat yield in the north Indian plains, India's major wheat growing region, was analyzed using panel data from the year 1981 to 2009. This study deviates from the majority of the previous studies by including non-climatic factors in estimating the impact of climate change. Two temperature measures were used for fitting the function, viz., Growing Season Temperature (GST) and Terminal Stage Temperature (TST), to find out the differential impact of increased temperature at various growth stages. Analysis revealed that there was a significant rise in both GST as well as TST during the study period. The magnitude of the annual increment in TST was twice that of GST. Wheat yield growth in the region was driven primarily by increased input resources such as fertilizer application and technological development like improved varieties and management practices. Most importantly, the study found that the extent of yield reduction was more significant for an increase in temperature at terminal crop growth stages. The yield reduction due to unit increase in TST was estimated to be 2.26 % while rise in GST by 1◦C resulted in yield reduction of 2.03%.


Author(s):  
Rajesh Bajpai ◽  
Manoj Semwal ◽  
C. P. Singh

The lichens are one of the most sensitive organism in nature among the different elements of biodiversity and can be affected more due to climate change. Lichens fulfil their water need from rain, fog and dew present in the atmosphere. The change in atmospheric temperature influence, to a greater extent, the thallus temperature and physiology of lichens which leads to emergence of new ecotype and finally the shift in a species. The impact of climatic factors on lichens ecophysiology, is different from higher plantsis due to the poikilohydric nature. The lichen bioindicator communities have been shown to exhibit correlation with climatic factors of an area. The changes in lichen biomass, frequency, diversity and indicatorcommunity indices, indicate changes in environmental gradients (temperature, humidity and UV radiation). A number of techniques regarding study the environmental and climatic change are available. However, the present correspondence hypothesized about some easy and low cost techniques to monitor climate change utilizing lichens. The overview will also leads to assess patterns of lichens responses with species representation and towards its understanding the current and future changes in climate of an area.


Author(s):  
Opeyemi Gbenga ◽  
H. I. Opaluwa ◽  
Awarun Olabode ◽  
Olowogbayi Jonathan Ayodele

Aim: Agriculture entails majorly crop and animal production. Crop and Livestock production provide the major human caloric and nutrition intake. Assessing the impact of climate change on crop and livestock productivity, is therefore critical to maintaining food supply in the world and particularly in Nigeria. Different studies have yielded different results in other parts of the world, it is therefore, very important to examine the linkage between climate change and agricultural productivity in Nigeria. Study Design: The study utilized secondary data. The study utilize climate data from Nigerian Meteorology Station and Carbon emission, Crop and Livestock production data from FOASTAT. Place and Duration of Study: The study was carried in Nigeria and it covers the period between 1970-2016. Methodology: The data were used to estimate the empirical models. Data were analyzed using descriptive statistics, trend analysis, stationarity, Co-integration and Fully-Modified Least Squares regression. Results: The result of the research reveals that there is variation in the trend of the climatic factors examined and also variation in crop and livestock production over the period covered by the study in Nigeria. The finding also shows that rainfall, temperature and Carbon emission are the climatic factors that significantly affect crop and livestock production in Nigeria. Long term adverse impact of climate change on crop and livestock production index indicates threat to food availability to the country. Conclusion: The study concluded that climatic variables have significant effect on agricultural productivity in Nigeria. The study recommended the need to put in place measures that will reduce the negative effects of climate on agricultural production.


2019 ◽  
Vol 86 ◽  
pp. 00013
Author(s):  
Elżbieta Jasińska

The subject of this publication is to determine what environmental and climatic factors can significantly affect the value of real estate. As a research object, there was chosen area surrounding the Gulf of Gdansk, which, like the entire coast, is attractive for investment and constitutes an interesting object as a space with a special focus on tourism, including short-term rental. Progressing climate change is particularly affecting this sector. It is safe to assume that unfavorable environmental conditions can significantly change the attractiveness of this area. Therefore, the research hypothesis about the correlation between climate aspects distinguishing the coastal belt and the distribution of real estate prices in the selected area has been verified. The area of the Gulf of Gdansk Coast and the technical and protective belt were analyzed. The weather situation on the coast is different from that prevailing in the rest of the country. There are strong and gusty winds, local floods, but at the same time a natural landscape, proximity to the sea and clean, iodized air. Other possible climatic factors have also been tracked, i.e. temperature, sea level and possible changes that may occur over the next years. The analyzes were based on the data of the KLIMAT project entitled "The impact of climate change on the environment, economy and society", and the Government Project KLIMADA and SPA analyzes. An in-depth analysis of the problem of combining planning documents for the maritime sector influencing the Study of Spatial Development of Polish Marine Areas with Local Spatial Management Plans, introduced Flood Risk Maps and Flood Risk Maps was also conducted.


2015 ◽  
Vol 8 (2) ◽  
pp. 171-179 ◽  
Author(s):  
Á Medina ◽  
A. Rodríguez ◽  
Y. Sultan ◽  
N. Magan

The objectives of this study were to obtain scientific data on the impact that interactions between water stress (water activity (aw); 0.97, 0.95, 0.92), temperature (34, 37 °C) and CO2 exposure (350, 650, 1000 ppm) may have on the growth, gene expression of biosynthetic genes (aflD, aflR), and phenotypic aflatoxin B1 (AFB1) production by a type strain of Aspergillus flavus on a conducive medium. The study showed that while aw affected growth there was no statistically significant effect of temperature or CO2 exposure. The effect of these interacting factors on aflD and aflR gene expression showed that at 34 °C there was maximum relative expression of aflD under the control conditions (34 °C, 350 ppm) with a decrease in expression with elevated CO2 and water stress. For aflR expression at 34 °C, there was a significant increase in expression, but only at 0.92 aw and 650 ppm CO2. However, at 37 °C, there was a significant increase in expression of both aflD and aflR at 0.95 and 0.92 aw and 650 and 1000 ppm CO2. There was an associated increase in AFB1 in these treatments. In contrast, at 34 °C there were no significant differences for interacting treatments. This is the first study to examine these three-way interacting climatic factors on growth and mycotoxin production by a strain of A. flavus. This provides data that are necessary to help predict the real impacts of climate change on mycotoxigenic fungi.


Bragantia ◽  
2010 ◽  
Vol 69 (1) ◽  
pp. 239-247 ◽  
Author(s):  
Marcelo Bento Paes de Camargo

The climatic variability is the main factor responsible for the oscillations and frustrations of the coffee grain yield in Brazil. The relationships between the climatic parameters and the agricultural production are quite complex, because environmental factors affect the growth and the development of the plants under different forms during the growth stages of the coffee crop. Agrometeorological models related to the growth, development and productivity can supply information for the soil water monitoring and yield forecast, based on the water stress. A soil water balance during different growth stages of the coffee crop, can quantify the effect of the available soil water on the decrease of the final yield. Other climatic factors can reduce the productivity, such as adverse air temperatures happened during different growth stages. Solar radiation and relative humidity influence many physiological processes of the coffee tree but are not generally thought to play an important role as thermal and rainfall conditions in defining potential yield or ecological limitations for this crop. According to the last report of the Intergovernmental Panel on Climate Change (IPCC, 2007), the global temperature is supposed to increase 1.1ºC to 6.4ºC and the rainfall 15% in the tropical areas of Brazil. Some Global warming projections as presented by IPCC will cause a strong decrease in the coffee production in Brazil. According to the literature besides the reduction of suitable areas for coffee production, the crop will tend to move South and uphill regions. This review article analyze the effect that these possible scenarios would have in the agro-climatic coffee zoning in Brazil, and adaptive solutions, such as agronomic mitigations and development of cultivars adapted to high temperatures is considered.


Sign in / Sign up

Export Citation Format

Share Document