Genetic vs. Epigenetic Disruption of the CEBPA Locus Yields Epigenomically and Biologically Distinct Leukemia Phenotypes.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2117-2117 ◽  
Author(s):  
Maria E. Figueroa ◽  
Bas J. Wouters ◽  
Yushan Li ◽  
Peter Valk ◽  
Bob Lowenberg ◽  
...  

Abstract Acute Myeloid Leukemia (AML) is a heterogeneous disease from the molecular and biological standpoints. In order to resolve some of this complexity, a recent microarray-based expression profiling study segregated cohorts of patients with common gene signatures. One of these signatures was associated with alterations of the CCAAT/enhancer-binding protein alpha (CEBPA) gene. Among these patients, a subset harbored CEBPA mutations, while the remainder failed to express CEBPA, which in a number of cases correlated with hypermethylation of its promoter. This latter subgroup of leukemias with silenced CEBPA presented with significant biological differences compared to CEBPA mutant patients, including expression of T-cell markers and activating mutations of NOTCH1 (Wouters BJ et. al., PMID:17671232). Since our preliminary data show that DNA methylation profiling is extremely accurate in identifying distinct biological phenotypes in AML and other tumors, we wondered whether genome-wide epigenetic analysis would identify the biological difference between these patients. In order to determine the DNA methylation profiles of these patients we performed HELP (HpaII tiny fragment Enrichment by Ligation-mediated PCR), a quantitative genome-wide DNA methylation method, using a 400,000 feature cutom-desinged microarray, representing 24,000 gene promoters with 50-mer oligonucleotides. We studied the complete previously identified cluster of AML cases presenting with a CEBPA expression signature, and compared and contrasted the DNA methylation profiles of cases carrying the CEBPA mutation and those presenting with CEBPA silencing. Remarkably, unsupervised (unbiased) clustering of DNA methylation profiles revealed that samples were readily segregated into two groups that overlapped perfectly with the presence or absence of the CEBPA mutation, indicating the presence of underlying genome-wide DNA methylation differences between these two groups. We next performed supervised analysis of the samples to compare the DNA methylation profiles of CEBPA mutated vs. CEBPA non-mutated samples. The analysis was performed using a moderated T test, and 291 genes promoters were identified as differentially methylated between the two groups at a significance level of p <0.001. Within this differentially methylated signature, we detected a clear predominance (90%) of hypermethylated genes in the CEBPA silenced group. The critical importance of CEBPA loss of function in mediating the phenotype of these tumors was underlined by the fact that multiple other members of the CEBPA network were likewise hypermethylated. Other than the CEBPA network, the two other most hypermethylated biological pathways involved p38MAPK signaling and PDGF/LCK signaling. Thus, we conclude i) that hypermethylation of the CEBPA promoter is not an isolated event, but rather part of a more widespread epigenetic regulation, and ii) that the original CEBPA signature group is composed of two distinct subgroups originating through two distinct mechanisms, a genetic one and an epigenetic one. The significance of these findings may be supported by the fact that the hypermethylated cohort of patients tended to show a worse prognosis than CEBPA mutant patients. These patients might be good candidates for DNA methyltransferase inhibitors in prospective clinical trials.

2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Jessilyn Dunn ◽  
Haiwei Qiu ◽  
Soyeon Kim ◽  
Daudi Jjingo ◽  
Ryan Hoffman ◽  
...  

Atherosclerosis preferentially occurs in arterial regions of disturbed blood flow (d-flow), which alters gene expression, endothelial function, and atherosclerosis. Here, we show that d-flow regulates genome-wide DNA methylation patterns in a DNA methyltransferase (DNMT)-dependent manner. We found that d-flow induced expression of DNMT1, but not DNMT3a or DNMT3b, in mouse arterial endothelium in vivo and in cultured endothelial cells by oscillatory shear (OS) compared to unidirectional laminar shear in vitro. The DNMT inhibitor 5-Aza-2’deoxycytidine (5Aza) or DNMT1 siRNA significantly reduced OS-induced endothelial inflammation. Moreover, 5Aza reduced lesion formation in two atherosclerosis models using ApoE-/- mice (western diet for 3 months and the partial carotid ligation model with western diet for 3 weeks). To identify the 5Aza mechanisms, we conducted two genome-wide studies: reduced representation bisulfite sequencing (RRBS) and transcript microarray using endothelial-enriched gDNA and RNA, respectively, obtained from the partially-ligated left common carotid artery (LCA exposed to d-flow) and the right contralateral control (RCA exposed to s-flow) of mice treated with 5Aza or vehicle. D-flow induced DNA hypermethylation in 421 gene promoters, which was significantly prevented by 5Aza in 335 genes. Systems biological analyses using the RRBS and the transcriptome data revealed 11 mechanosensitive genes whose promoters were hypermethylated by d-flow but rescued by 5Aza treatment. Of those, five genes contain hypermethylated cAMP-response-elements in their promoters, including the transcription factors HoxA5 and Klf3. Their methylation status could serve as a mechanosensitive master switch in endothelial gene expression. Our results demonstrate that d-flow controls epigenomic DNA methylation patterns in a DNMT-dependent manner, which in turn alters endothelial gene expression and induces atherosclerosis.


Zygote ◽  
2021 ◽  
pp. 1-6
Author(s):  
Liliana Burlibaşa ◽  
Alina-Teodora Nicu ◽  
Carmen Domnariu

Summary The process of cytodifferentiation in spermatogenesis is governed by a unique genetic and molecular programme. In this context, accurate ‘tuning’ of the regulatory mechanisms involved in germ cells differentiation is required, as any error could have dramatic consequences on species survival and maintenance. To study the processes that govern the spatial–temporal expression of genes, as well as analyse transmission of epigenetic information to descendants, an integrated approach of genetics, biochemistry and cytology data is necessary. As information in the literature on interplay between DNA methylation and histone H3 lysine 4 trimethylation (H3K4me3) in the advanced stages of murine spermatogenesis is still scarce, we investigated the effect of a DNA methyltransferase inhibitor, 5-aza-2′-deoxycytidine, at the cytological level using immunocytochemistry methodology. Our results revealed a particular distribution of H3K4me3 during sperm cell differentiation and highlighted an important role for regulation of DNA methylation in controlling histone methylation and chromatin remodelling during spermatogenesis.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Shir Toubiana ◽  
Miriam Gagliardi ◽  
Mariarosaria Papa ◽  
Roberta Manco ◽  
Maty Tzukerman ◽  
...  

DNA methyltransferase 3B (DNMT3B) is the major DNMT that methylates mammalian genomes during early development. Mutations in human DNMT3B disrupt genome-wide DNA methylation patterns and result in ICF syndrome type 1 (ICF1). To study whether normal DNA methylation patterns may be restored in ICF1 cells, we corrected DNMT3B mutations in induced pluripotent stem cells from ICF1 patients. Focusing on repetitive regions, we show that in contrast to pericentromeric repeats, which reacquire normal methylation, the majority of subtelomeres acquire only partial DNA methylation and, accordingly, the ICF1 telomeric phenotype persists. Subtelomeres resistant to de novo methylation were characterized by abnormally high H3K4 trimethylation (H3K4me3), and short-term reduction of H3K4me3 by pharmacological intervention partially restored subtelomeric DNA methylation. These findings demonstrate that the abnormal epigenetic landscape established in ICF1 cells restricts the recruitment of DNMT3B, and suggest that rescue of epigenetic diseases with genome-wide disruptions will demand further manipulation beyond mutation correction.


2013 ◽  
Author(s):  
Benjamin P. Berman ◽  
Yaping Liu ◽  
Theresa K. Kelly

Background: Nucleosome organization and DNA methylation are two mechanisms that are important for proper control of mammalian transcription, as well as epigenetic dysregulation associated with cancer. Whole-genome DNA methylation sequencing studies have found that methylation levels in the human genome show periodicities of approximately 190 bp, suggesting a genome-wide relationship between the two marks. A recent report (Chodavarapu et al., 2010) attributed this to higher methylation levels of DNA within nucleosomes. Here, we analyzed a number of published datasets and found a more compelling alternative explanation, namely that methylation levels are highest in linker regions between nucleosomes. Results: Reanalyzing the data from (Chodavarapu et al., 2010), we found that nucleosome-associated methylation could be strongly confounded by known sequence-related biases of the next-generation sequencing technologies. By accounting for these biases and using an unrelated nucleosome profiling technology, NOMe-seq, we found that genome-wide methylation was actually highest within linker regions occurring between nucleosomes in multi-nucleosome arrays. This effect was consistent among several methylation datasets generated independently using two unrelated methylation assays. Linker-associated methylation was most prominent within long Partially Methylated Domains (PMDs) and the positioned nucleosomes that flank CTCF binding sites. CTCF adjacent nucleosomes retained the correct positioning in regions completely devoid of CpG dinucleotides, suggesting that DNA methylation is not required for proper nucleosomes positioning. Conclusions: The biological mechanisms responsible for DNA methylation patterns outside of gene promoters remain poorly understood. We identified a significant genome-wide relationship between nucleosome organization and DNA methylation, which can be used to more accurately analyze and understand the epigenetic changes that accompany cancer and other diseases.


2019 ◽  
Vol 20 (16) ◽  
pp. 1151-1157 ◽  
Author(s):  
Jia Yu ◽  
Jacqueline Zayas ◽  
Bo Qin ◽  
Liewei Wang

Triple-negative breast cancer (TNBC) accounts for 15–20% of all invasive breast cancers and tends to have aggressive histological features and poor clinical outcomes. Unlike, estrogen receptor- or HER2-positive diseases, TNBC patients currently lack the US FDA-approved targeted therapies. DNA methylation is a critical mechanism of epigenetic modification. It is well known that aberrant DNA methylation contributes to the malignant transformation of cells by silencing critical tumor suppressor genes. DNA methyltransferase inhibitors reactivate silenced tumor suppressor genes and result in tumor growth arrest, with therapeutic effects observed in patients with hematologic malignancies. The antitumor effect of these DNA methyltransferase inhibitors has also been explored in solid tumors, especially in TNBC that currently lacks targeted therapies.


2018 ◽  
Vol 35 (16) ◽  
pp. 2718-2723 ◽  
Author(s):  
Tamir Tuller ◽  
Alon Diament ◽  
Avital Yahalom ◽  
Assaf Zemach ◽  
Shimshi Atar ◽  
...  

Abstract Motivation The COP9 signalosome is a highly conserved multi-protein complex consisting of eight subunits, which influences key developmental pathways through its regulation of protein stability and transcription. In Arabidopsis thaliana, mutations in the COP9 signalosome exhibit a number of diverse pleiotropic phenotypes. Total or partial loss of COP9 signalosome function in Arabidopsis leads to misregulation of a number of genes involved in DNA methylation, suggesting that part of the pleiotropic phenotype is due to global effects on DNA methylation. Results We determined and analyzed the methylomes and transcriptomes of both partial- and total-loss-of-function Arabidopsis mutants of the COP9 signalosome. Our results support the hypothesis that the COP9 signalosome has a global genome-wide effect on methylation and that this effect is at least partially encoded in the DNA. Our analyses suggest that COP9 signalosome-dependent methylation is related to gene expression regulation in various ways. Differentially methylated regions tend to be closer in the 3D conformation of the genome to differentially expressed genes. These results suggest that the COP9 signalosome has a more comprehensive effect on gene expression than thought before, and this is partially related to regulation of methylation. The high level of COP9 signalosome conservation among eukaryotes may also suggest that COP9 signalosome regulates methylation not only in plants but also in other eukaryotes, including humans. Supplementary information Supplementary data are available at Bioinformatics online.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 831-831
Author(s):  
Megan Ryan ◽  
Leandro Cerchietti ◽  
Maria E. Figueroa ◽  
John Greally ◽  
Ari Melnick

Abstract DNA methyltransferase inhibitor drugs (MTIs) such as decitabine can overcome gene silencing due to aberrant hypermethylation of gene promoters. Presumably, this effect is responsible for the therapeutic activity of MTIs as clinically demonstrated in myelodysplasias (MDS) and leukemias. Other tumors such as diffuse large B-cell lymphomas (DLBCLs) can also present with aberrant promoter hypermethylation. However, it is currently difficult to prospectively identify patients likely to respond to MTIs, since specific methylation markers or signatures have not yet been identified. We predicted that decitabine would have anti-lymphoma activity in a subset of DLBCLs, and that these cases would exhibit specific methylation signatures predictive of response to these drugs. To determine whether this is the case we first exposed a panel of 7 DLBCL cell lines (Ly1, Ly7, Ly10, SU-DHL6, Farage, Pfeiffer and Toledo) to increasing concentrations of decitabine (0.5, 1, 2.5, 5, 10, 50 and 100 μM) administered after synchronization by 12 hr serum starvation. Viability was assessed after 48 hr of culture by MTS-based assay and Trypan blue exclusion. The IC25 and IC50 were calculated for all cell lines by constructing dose-response curves. The IC25 was used to discriminate sensitive (6.3 ± 1.2 μM) vs. resistant (49.4 ± 5 μM, p < 0.01) cell lines. Interestingly, there was no correlation between MTI sensitivity and DLBCL subtype as defined by recent gene expression profiling classification efforts (i.e. GCB vs. ABC, or BCR vs. OxPhos). To identify the methylation signatures of these DLBCL cells we used a method that we developed for genome-wide DNA methylation quantification called HELP (HpaII tiny fragment Enrichment by LM-PCR). HELP is based on comparative Msp1 and HpaII digestion of genomic DNA, followed by size specific amplification and co-hybridization to custom high-density oligonucleotide arrays designed to provide uniform data collection over 25,000 promoters. HELP compares favorably to other high throughput methods in that it is highly reproducible (R > 0.98) and has an extremely robust signal-to-noise ratio. DNA was collected from the DLBCL cells for HELP prior to drug treatment. Most significantly we found that unsupervised (i.e. unbiased) clustering of DNA methylation profiles could readily segregate decitabine resistant vs. sensitive DLBCL cell lines. Correspondence analysis clearly identified a methylation signature consisting of 133 differentially methylated genes that distinguishes between decitabine sensitive and resistant cells. Most of these appeared to be functionally relevant including such genes as Caspase-9, RARB, JUNB, and ELK1. Biological assays to determine the contribution of these genes to the phenotype are underway. Taken together, our data suggest that MTIs might be effective in a cohort of DLBCL cases that exhibit the specific methylation signature that we have identified. Prospective evaluation of the predictive value of this signature may allow optimal selection of patients for clinical trials with these agents.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. SCI-33-SCI-33 ◽  
Author(s):  
Ari M. Melnick ◽  
Ross L Levine ◽  
Maria E Figueroa ◽  
Craig B. Thompson ◽  
Omar Abdel-Wahab

Abstract Abstract SCI-33 Epigenetic deregulation of gene expression through aberrant DNA methylation or histone modification plays an important role in the malignant transformation of hematopoietic cells. In particular, acute myeloid leukemias (AMLs) can be classified according to epigenetic signatures affecting DNA methylation or histone modifications affecting specific gene sets. Heterozygous somatic mutations in the loci encoding isocitrate dehydrogenase 1 and 2 (IDH1/2) occur in ∼20% of AMLs and are accompanied by global DNA hypermethylation and hypermethylation and silencing of a number of specific gene promoters. IDH1/2 mutations are almost completely mutually exclusive with somatic loss-of-function mutations in TET2, which hydroxylates methylcytosine (mCpG). DNA hydroxymethylation can function as an intermediate step in mCpG demethylation. TET2 mutant de novo AMLs also display global and promoter specific hypermethylation partially overlapping with IDH1/2 mutant cases. Mutations in the IDH1/2 loci result in a neomorphic enzyme that generates the aberrant oncometabolite 2-hydroxyglutarate (2HG) using α-ketoglutarate (αKG) as a substrate. 2HG can disrupt the activity of enzymes that use αKG as a cofactor, including TET2 and the jumonji family of histone demethylases. Expression of mutant IDH isoforms inhibits TET2 hydroxymethylation and jumonji histone demethylase functions. IDH and TET2 mutant AMLs accordingly exhibit reduced levels of hydroxymethylcytosine and a trend towards increased histone methylation. Mutant IDH or TET2 loss of function causes differentiation blockade and expansion of hematopoietic stem cells and TET2 knockout results in a myeloproliferative phenotype in mice. Hydroxymethylcytosine is in abundance in hematopoietic stem cells and displays specific distribution patterns, yet the function of this covalent modification is not fully understood. Recent data link TET2 with the function of cytosine deaminases as a pathway towards DNA demethylation, which has implications as well for B cell lymphomas and CML lymphoid blast crisis, which are linked with the actions of activation induced cytosine deaminase. Altogether, the available data implicate mutations in IDH1/2 and TET2 in promoting malignant transformation in several tissues, by disrupting epigenomics programming and altering gene expression patterning. Disclosures: Thompson: Agios Pharmaceuticals: Consultancy.


2013 ◽  
Vol 112 (11) ◽  
pp. 3757-3770 ◽  
Author(s):  
Saleh Al-Quraishy ◽  
Mohamed A. Dkhil ◽  
Abdel Azeem S. Abdel-Baki ◽  
Denis Delic ◽  
Simeon Santourlidis ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Chuan Qiu ◽  
Hui Shen ◽  
Xiaoying Fu ◽  
Chao Xu ◽  
Hongwen Deng

Osteoporosis is a serious public health issue, which is mostly characterized by low bone mineral density (BMD). To search for additional genetic susceptibility loci underlying BMD variation, an effective strategy is to focus on testing of specific variants with high potential of functional effects. Single nucleotide polymorphisms (SNPs) that introduce or disrupt CpG dinucleotides (CpG-SNPs) may alter DNA methylation levels and thus represent strong candidate functional variants. Here, we performed a targeted GWAS for 63,627 potential functional CpG-SNPs that may affect DNA methylation in bone-related cells, in five independent cohorts (n=5905). By meta-analysis, 9 CpG-SNPs achieved a genome-wide significance level (p<7.86×10−7) for association with lumbar spine BMD and additional 15 CpG-SNPs showed suggestive significant (p<5.00×10−5) association, of which 2 novel SNPs rs7231498 (NFATC1) and rs7455028 (ESR1) also reached a genome-wide significance level in the joint analysis. Several identified CpG-SNPs were mapped to genes that have not been reported for association with BMD in previous GWAS, such as NEK3 and NFATC1 genes, highlighting the enhanced power of targeted association analysis for identification of novel associations that were missed by traditional GWAS. Interestingly, several genomic regions, such as NEK3 and LRP5 regions, contained multiple significant/suggestive CpG-SNPs for lumbar spine BMD, suggesting that multiple neighboring CpG-SNPs may synergistically mediate the DNA methylation level and gene expression pattern of target genes. Furthermore, functional annotation analyses suggested a strong regulatory potential of the identified BMD-associated CpG-SNPs and a significant enrichment in biological processes associated with protein localization and protein signal transduction. Our results provided novel insights into the genetic basis of BMD variation and highlighted the close connections between genetic and epigenetic mechanisms of complex disease.


Sign in / Sign up

Export Citation Format

Share Document