Remote Site Production of Sterile Purified Water from Available Surface Water

2004 ◽  
Vol 19 (3) ◽  
pp. 266-277 ◽  
Author(s):  
Michael A. Taylor ◽  
Elaine F. Alambra ◽  
John Anes ◽  
Joel Behnke ◽  
Brandusa Enachescu ◽  
...  

AbstractA water purification and sterilization device was tested for its functional capabilities. Challenge water consisting of potable water augmented with bacteria, endotoxin, virus, suspended solids, and dissociable ions (sodium chloride, lead or arsenic salts) was passed through the device. The product water quality attributes were analyzed. The device demonstrated reduction in bacteria of >7 logs, endotoxin was reduced by >4 logs, virus was reduced by >4 logs, and dissociable ions were reduced by >3 logs. The product water of the device met the limits for a range of chemical entities specified by the United States Pharmacopeia and Association for the Advancement of Medical Instrumentation. The product water met the quality attributes of Sterile Water for Injection, USP, Sterile Purified Water, USP, and the Water for Dialysis. The device provides a logistical advantage in reducing the weight of transport of packaged water by 83% and the cube by 67%. It operates manually by gravity and is disposable after a single use. The device provides an effective alternative to the transport and use of packaged sterile water in remote locations by production of sterile water at the pointof-need using available water. It also is capable of producing safe drinking water following the production of clinical waters. This device has been cleared by the US Food and Drug Administration for production of three liters Sterile Purified Water, USP from Environmental Protection Agency (EPA) grade drinking water.

2016 ◽  
Vol 23 (2) ◽  
pp. 205-213 ◽  
Author(s):  
Peter Reichetseder

Abstract Shale gas production in the US, predominantly from the Marcellus shale, has been accused of methane emissions and contaminating drinking water under the suspicion that this is caused by hydraulic fracturing in combination with leaking wells. Misunderstandings of the risks of shale gas production are widespread and are causing communication problems. This paper discusses recent preliminary results from the US Environmental Protection Agency (EPA) draft study, which is revealing fact-based issues: EPA did not find evidence that these mechanisms have led to widespread, systemic impacts on drinking water resources in the United States, which contrasts many broad-brushed statements in media and public. The complex geological situation and extraction history of oil, gas and water in the Marcellus area in Pennsylvania is a good case for learnings and demonstrating the need for proper analysis and taking the right actions to avoid problems. State-of-the-art technology and regulations of proper well integrity are available, and their application will provide a sound basis for shale gas extraction.


1994 ◽  
Vol 8 (4) ◽  
pp. 852-861 ◽  
Author(s):  
Henry Nelson ◽  
R. David Jones

Post-application seasonal (May-July) average concentrations of atrazine, cyanazine, and, to a lesser extent, alachlor sometimes exceed their Maximum Contaminant Levels (MCLs) (3 ug/L for atrazine and 2 ug/L for alachlor) or Maximum Contaminant Level Goal (MCLG) (1 ug/L for cyanazine) in surface waters of the Mississippi and Great Lakes Basins. These three chemicals are among the primary pre-emergent herbicides applied to corn. MCLs and MCLGs are compared to annual average concentrations for regulatory purposes. However, annual average concentrations are much less frequently reported than post-application seasonal averages. In most cases, both seasonal and annual average concentrations are substantially less than the MCLs or MCLG. However, actual and estimated annual mean concentrations occasionally exceed the MCLs or MCLG. Actual or estimated exceedences occur more frequently for atrazine and cyanazine than for alachlor, and may occur more frequently in lakes or reservoirs with long retention times than in streams and rivers. Additional year round data, and data for lakes and reservoirs, are needed to determine the extent to which such exceedences occur throughout the corn belt. The American Water Works Association (AWWA) believes that substantial numbers of Community Water Systems (CWSs) within the corn belt are currently, or will be, in violation of the revised Safe Drinking Water Act (SDWA) with respect to atrazine and cyanazine. They are concerned that such violations could result in numerous CWSs having to implement expensive tertiary treatment systems such as granular activated carbon to decrease herbicide concentrations. The United States Environmental Protection Agency, (US EPA) is continuing to review data on the pesticide concentrations in reservoirs and lakes that registrants have been submitting over the last 18 mo under the 6(a)(2) adverse impact provision of the Federal Insecticide, Fungicide and Rodenticide Act (FIFRA). The US EPA is also currently using computer modeling and other methods to evaluate potential alternative and/or supplemental herbicides to reduce atrazine use. In June 1992, the US EPA approved revised labeling that is designed to reduce indirect atrazine loadings to surface waters. Additional mitigation methods have been proposed and are being considered.


2015 ◽  
Vol 14 (2) ◽  
pp. 223-235 ◽  
Author(s):  
Katherine Phetxumphou ◽  
Siddhartha Roy ◽  
Brenda M. Davy ◽  
Paul A. Estabrooks ◽  
Wen You ◽  
...  

The United States Environmental Protection Agency mandates that community water systems (CWSs), or drinking water utilities, provide annual consumer confidence reports (CCRs) reporting on water quality, compliance with regulations, source water, and consumer education. While certain report formats are prescribed, there are no criteria ensuring that consumers understand messages in these reports. To assess clarity of message, trained raters evaluated a national sample of 30 CCRs using the Centers for Disease Control Clear Communication Index (Index) indices: (1) Main Message/Call to Action; (2) Language; (3) Information Design; (4) State of the Science; (5) Behavioral Recommendations; (6) Numbers; and (7) Risk. Communication materials are considered qualifying if they achieve a 90% Index score. Overall mean score across CCRs was 50 ± 14% and none scored 90% or higher. CCRs did not differ significantly by water system size. State of the Science (3 ± 15%) and Behavioral Recommendations (77 ± 36%) indices were the lowest and highest, respectively. Only 63% of CCRs explicitly stated if the water was safe to drink according to federal and state standards and regulations. None of the CCRs had passing Index scores, signaling that CWSs are not effectively communicating with their consumers; thus, the Index can serve as an evaluation tool for CCR effectiveness and a guide to improve water quality communications.


2006 ◽  
Vol 4 (S2) ◽  
pp. 201-240 ◽  
Author(s):  
Michael Messner ◽  
Susan Shaw ◽  
Stig Regli ◽  
Ken Rotert ◽  
Valerie Blank ◽  
...  

In this paper, the US Environmental Protection Agency (EPA) presents an approach and a national estimate of drinking water related endemic acute gastrointestinal illness (AGI) that uses information from epidemiologic studies. There have been a limited number of epidemiologic studies that have measured waterborne disease occurrence in the United States. For this analysis, we assume that certain unknown incidence of AGI in each public drinking water system is due to drinking water and that a statistical distribution of the different incidence rates for the population served by each system can be estimated to inform a mean national estimate of AGI illness due to drinking water. Data from public water systems suggest that the incidence rate of AGI due to drinking water may vary by several orders of magnitude. In addition, data from epidemiologic studies show AGI incidence due to drinking water ranging from essentially none (or less than the study detection level) to a rate of 0.26 cases per person-year. Considering these two perspectives collectively, and associated uncertainties, EPA has developed an analytical approach and model for generating a national estimate of annual AGI illness due to drinking water. EPA developed a national estimate of waterborne disease to address, in part, the 1996 Safe Drinking Water Act Amendments. The national estimate uses best available science, but also recognizes gaps in the data to support some of the model assumptions and uncertainties in the estimate. Based on the model presented, EPA estimates a mean incidence of AGI attributable to drinking water of 0.06 cases per year (with a 95% credible interval of 0.02–0.12). The mean estimate represents approximately 8.5% of cases of AGI illness due to all causes among the population served by community water systems. The estimated incidence translates to 16.4 million cases/year among the same population. The estimate illustrates the potential usefulness and challenges of the approach, and provides a focus for discussions of data needs and future study designs. Areas of major uncertainty that currently limit the usefulness of the approach are discussed in the context of the estimate analysis.


1999 ◽  
Vol 40 (2) ◽  
pp. 69-76 ◽  
Author(s):  
T. Viraraghavan ◽  
K. S. Subramanian ◽  
J. A. Aruldoss

The current United States maximum contaminant level for arsenic in drinking water is set at 50 μg/l. Because of the cancer risks involved, Canada has already lowered the maximum contaminant level to 25 μg/l; the United States Environmental Protection Agency is reviewing the current allowable level for arsenic with a view of lowering it significantly. Various treatment methods have been adopted to remove arsenic from drinking water. These methods include 1) adsorption-coprecipitation using iron and aluminum salts, 2) adsorption on activated alumina, activated carbon, and activated bauxite, 3) reverse osmosis, 4) ion exchange and 5) oxidation followed by filtration. Because of the promise of oxidation-filtration systems, column studies were conducted at the University of Regina to examine oxidation with KMnO4 followed by filtration using manganese greensand and iron-oxide coated sand to examine the removal of arsenic from drinking water; these results were compared with the data from ion exchange studies. These studies demonstrated that As (III) could be reduced from 200 μg/l to below 25 μg/l by the manganese greensand system. In the case of manganese greensand filtration, addition of iron in the ratio of 20:1 was found necessary to achieve this removal.


2010 ◽  
Vol 10 (15) ◽  
pp. 7415-7423 ◽  
Author(s):  
B. Gantt ◽  
N. Meskhidze ◽  
A. G. Carlton

Abstract. The contribution of marine organic emissions to the air quality in coastal areas of the western United States is studied using the latest version of the US Environmental Protection Agency (EPA) regional-scale Community Multiscale Air Quality (CMAQv4.7) modeling system. Emissions of marine isoprene, monoterpenes, and primary organic matter (POM) from the ocean are implemented into the model to provide a comprehensive view of the connection between ocean biology and atmospheric chemistry and air pollution. Model simulations show that marine organics can increase the concentration of PM2.5 by 0.1–0.3 μg m−3 (up to 5%) in some coastal cities such as San Francisco, CA. This increase in the PM2.5 concentration is primarily attributed to the POM emissions, with small contributions from the marine isoprene and monoterpenes. When marine organic emissions are included, organic carbon (OC) concentrations over the remote ocean are increased by up to 50% (25% in coastal areas), values consistent with recent observational findings. This study is the first to quantify the air quality impacts from marine POM and monoterpenes for the United States, and it highlights the need for inclusion of marine organic emissions in air quality models.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Hamid Ferdosi ◽  
Elisabeth K. Dissen ◽  
Nana Ama Afari-Dwamena ◽  
Ji Li ◽  
Rusan Chen ◽  
...  

Background.To examine whether the US EPA (2010) lung cancer risk estimate derived from the high arsenic exposures (10–934 µg/L) in southwest Taiwan accurately predicts the US experience from low arsenic exposures (3–59 µg/L).Methods. Analyses have been limited to US counties solely dependent on underground sources for their drinking water supply with median arsenic levels of ≥3 µg/L.Results. Cancer risks (slopes) were found to be indistinguishable from zero for males and females. The addition of arsenic level did not significantly increase the explanatory power of the models. Stratified, or categorical, analysis yielded relative risks that hover about 1.00. The unit risk estimates were nonpositive and not significantly different from zero, and the maximum (95% UCL) unit risk estimates for lung cancer were lower than those in US EPA (2010).Conclusions. These data do not demonstrate an increased risk of lung cancer associated with median drinking water arsenic levels in the range of 3–59 µg/L. The upper-bound estimates of the risks are lower than the risks predicted from the SW Taiwan data and do not support those predictions. These results are consistent with a recent metaregression that indicated no increased lung cancer risk for arsenic exposures below 100–150 µg/L.


2020 ◽  
Vol 6 (3) ◽  
Author(s):  
William A. Horn ◽  
Joshua D. Beard

The Michigan Department of Environment, Great Lakes, and Energy (“EGLE”), formerly the Michigan Department of Environmental Quality, is in the process of seeking primary enforcement responsibility from the United States Environmental Protection Agency (“EPA”) for its Underground Injection Control (“UIC”) program for Class II wells pursuant to Part C of the Safe Drinking Water Act (“SDWA”).


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2276 ◽  
Author(s):  
Pang ◽  
Mackevica ◽  
Tian ◽  
Feng ◽  
Li ◽  
...  

Abstract: For water sterilization, a highly effective system utilizing electrophoresis and the antimicrobial properties of Ag/ZnO nanomaterials has been developed. However, the key component of this system, a sterilization carbon cloth containing Ag/ZnO nanomaterials, has not been evaluated with respect to the potential environmental and human health risks associated with the nanomaterials released. In this paper, a recirculation flow system and methodology were developed to study the release of Ag and ZnO during water treatment. Our study showed that the released silver nanoparticles and dissolved Ag from the carbon cloth were 50 µg/L and 143 µg/L in the United States Environmental Protection Agency (EPA) medium, respectively. The release of dissolved Zn in the EPA medium was 33 µg /L. The results indicate that the release of dissolved and nanoparticulate silver from the sterilization carbon cloth exceeded acceptable risk levels in the aquatic environment. However, if the sterilization carbon cloth was pre-washed two days prior to use, the concentration of Ag was below the drinking water limit of 0.1 mg/L. Our study provides important exposure data for a novel water sanitation technology for real-world application in waste water and drinking water treatment, and aid in assuring its safe use.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2003 ◽  
Author(s):  
Pontius

Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are receiving global attention due to their persistence in the environment through wastewater effluent discharges and past improper industrial waste disposal. They are resistant to biological degradation and if present in wastewater are discharged into the environment. The US Environmental Protection Agency (USEPA) issued drinking water Health Advisories for PFOA and PFOS at 70 ng/L each and for the sum of the two. The need for an enforceable primary drinking water regulation under the Safe Drinking Water Act (SDWA) is currently being assessed. The USEPA faces stringent legal constraints and technical barriers to develop a primary drinking water regulation for PFOA and PFOS. This review synthesizes current knowledge providing a publicly available, comprehensive point of reference for researchers, water utilities, industry, and regulatory agencies to better understand and address cross-cutting issues associated with regulation of PFOA and PFOS contamination of drinking water.


Sign in / Sign up

Export Citation Format

Share Document