Determining Grain Boundary Position and Geometry from EBSD Data: Limits of Accuracy

2021 ◽  
pp. 1-13
Author(s):  
David T. Fullwood ◽  
Sarah Sanderson ◽  
Sterling Baird ◽  
Jordan Christensen ◽  
Eric R. Homer ◽  
...  

As the feature size of crystalline materials gets smaller, the ability to correctly interpret geometrical sample information from electron backscatter diffraction (EBSD) data becomes more important. This paper uses the notion of transition curves, associated with line scans across grain boundaries (GBs), to correctly account for the finite size of the excitation volume (EV) in the determination of the geometry of the boundary. Various metrics arising from the EBSD data are compared to determine the best experimental proxy for actual numbers of backscattered electrons that are tracked in a Monte Carlo simulation. Consideration of the resultant curves provides an accurate method of determining GB position (at the sample surface) and indicates a significant potential for error in determining GB position using standard EBSD software. Subsequently, simple criteria for comparing experimental and simulated transition curves are derived. Finally, it is shown that the EV is too shallow for the curves to reveal subsurface geometry of the GB (i.e., GB inclination angle) for most values of GB inclination.

2007 ◽  
Vol 1012 ◽  
Author(s):  
Helio Moutinho ◽  
Ramesh Dhere ◽  
Chun-Sheng Jiang ◽  
Bobby To ◽  
Mowafak Al-Jassim

AbstractIn electron-backscatter diffraction, crystalline orientation maps are formed while the electron beam of an SEM scans the sample surface. EBSD requires a flat sample to avoid shadowing of the electrons from the detector by surface features. In this work, we investigate the preparation of CdTe samples deposited by close-spaced sublimation for EBSD analysis. Untreated samples were rough, resulting in areas with no EBSD signal. We processed the samples by polishing and ion-beam milling. Polishing produced flat samples, but low-quality EBDS data, because the top surface of the samples had poor crystallinity. In contrast, ion-beam milling proved to be suitable for producing flat samples with minimal surface damage, yielding good EBSD data. We also analyzed the samples with atomic force microscopy, and correlated the quality of the EBSD data with sample roughness. The EBSD data showed that the CdTe films were randomly oriented and had columnar growth and a high density of <111> twin boundaries.


2006 ◽  
Vol 70 (4) ◽  
pp. 373-382 ◽  
Author(s):  
G. Nolze ◽  
G. Wagner ◽  
R. Saliwan Neumann ◽  
R. Skála ◽  
V. Geist

AbstractThe crystallographic orientation of carlsbergite (CrN) in the north Chile meteorite (hexahedrite) was investigated using electron backscatter diffraction and transmission electron microscopy. These studies examined the CrN crystals in the rhabdites (idiomorphic schreibersite) and in kamacite. It was found that the CrN crystals embedded in rhabdite show a number of different orientation relationships with the host crystals. These orientations can be explained based on the lattice dimensions of both coexisting crystalline materials. It was also found that both carlsbergite and kamacite are characterized by a high dislocation density (≥ l09 cm-2) while rhabdite is free of dislocations. It is supposed that in spite of the deformed metallic matrix, a general connection between the orientation relation of all the phases involved exists.


2013 ◽  
Vol 46 (4) ◽  
pp. 1145-1150 ◽  
Author(s):  
Melanie Syha ◽  
Andreas Trenkle ◽  
Barbara Lödermann ◽  
Andreas Graff ◽  
Wolfgang Ludwig ◽  
...  

Microstructure reconstructions resulting from diffraction contrast tomography data of polycrystalline bulk strontium titanate were reinvestigated by means of electron backscatter diffraction (EBSD) characterization. Corresponding two-dimensional grain maps from the two characterization methods were aligned and compared, focusing on the spatial resolution at the internal interfaces. The compared grain boundary networks show a remarkably good agreement both morphologically and in crystallographic orientation. Deviations are critically assessed and discussed in the context of diffraction data reconstruction and EBSD data collection techniques.


2009 ◽  
Vol 15 (3) ◽  
pp. 197-203 ◽  
Author(s):  
Alberto Pérez-Huerta ◽  
Maggie Cusack

AbstractElectron backscatter diffraction (EBSD) is becoming a widely used technique to determine crystallographic orientation in biogenic carbonates. Despite this use, there is little information available on preparation for the analysis of biogenic carbonates. EBSD data are compared for biogenic aragonite and calcite in the common blue mussel, Mytilus edulis, using different types of resin and thicknesses of carbon coating. Results indicate that carbonate biomineral samples provide better EBSD results if they are embedded in resin, particularly epoxy resin. A uniform layer of carbon of 2.5 nm thickness provides sufficient conductivity for EBSD analyses of such insulators to avoid charging without masking the diffracted signal. Diffraction intensity decreases with carbon coating thickness of 5 nm or more. This study demonstrates the importance of optimizing sample preparation for EBSD analyses of insulators such as carbonate biominerals.


2011 ◽  
Vol 702-703 ◽  
pp. 834-837
Author(s):  
Peter Honniball ◽  
Michael Preuss ◽  
Joao Quinta da Fonseca

The mechanical behaviour and texture evolution during uniaxial compression of Zircaloy-4 at different temperatures (25, 300, 500 C) has been studied. At room temperature and 300 C the texture evolution and strain-hardening behaviour observed are attributed to the activation of {10-12} tensile twinning, which can be identified in optical micrographs and electron backscatter diffraction (EBSD) data. The influence of twinning upon the texture evolution and hardening rate becomes less apparent with increasing temperature. Nevertheless twinning is still active at 500 C. Simulation of the texture evolution at 500 C using crystal plasticity finite element modelling (CPFEM) indicates that slip alone cannot explain the experimentally observed textures at this temperature.


2021 ◽  
Author(s):  
John Wheeler ◽  
Sandra Piazolo ◽  
David Prior ◽  
Jake Tielke ◽  
Pat Trimby

&lt;p&gt;In many parts of the Earth rocks deform by dislocation creep. There is therefore a need to understand which slip systems operated in nature and in experimental products. Knowing the conditions of experiments may then allow natural conditions and strain rates to be characterised. Dislocation creep typically gives lattice preferred orientations (LPOs), since activity on particular slip systems leads to lattice rotations and alignment. For decades LPOs, measured first optically and since the 1990s by EBSD, have been used to infer slip systems. This is a valuable technique but the link between slip sytem activity and LPO is complicated, especially if recrystallisation and/or grain boundary sliding have been involved.&lt;/p&gt;&lt;p&gt;Here we present a more direct method to deduce &amp;#8220;geometrically necessary&amp;#8221; dislocations (GNDs) from the distortions within crystals. Distortions may be optically visible (e.g. undulose extinction in quartz) but EBSD has revealed how common distortions are, and allowed them to be quantified. The method does not give the complete picture of GNDs but allows hypotheses to be tested about possible slip systems. We illustrate this &amp;#8220;Weighted Burgers Vector&amp;#8221; method with a number of examples. In olivine the method distinguishes slip parallel to a and c, and in plastically deformed plagioclase it reveals a variety of slip systems which would be difficuilt to deduce from LPOs alone. GNDs may not necessarily reflect the full slip system activity, since many dislocations will have passed through crystals and merged with grain boundaries leaving no signature. Neverthless the method highlights what dislocations are present &amp;#8220;stranded&amp;#8221; in the microstructure. In many case these will have been produced by deformation although the method can also characterise growth defects.&lt;/p&gt;&lt;p&gt;Wheeler et al. 2009. The weighted Burgers vector: a new quantity for constraining dislocation densities and types using electron backscatter diffraction on 2D sections through crystalline materials. &lt;span&gt;DOI:&lt;/span&gt;&amp;#160;10.1111/j.1365-2818.2009.03136.x&lt;/p&gt;


2012 ◽  
Vol 715-716 ◽  
pp. 498-501 ◽  
Author(s):  
Ali Gholinia ◽  
Ian Brough ◽  
John F. Humphreys ◽  
Pete S. Bate

A combination of electron backscatter diffraction (EBSD) and focused ion beam (FIB) techniques were used to obtain 3D EBSD data in an investigation of dynamic recrystallization in a Cu-2%Sn bronze alloy. The results of this investigation show the origin of the nucleation sites for dynamic recrystallization and also elucidates the orientation relationship of the recrystallized grains to the deformed, prior grains and between the dynamically recrystallized grains.


2019 ◽  
Vol 52 (2) ◽  
pp. 415-427 ◽  
Author(s):  
T. Skippon ◽  
L. Balogh ◽  
M. R. Daymond

Two methods for measuring dislocation density were applied to a series of plastically deformed tensile samples of Zircaloy-2. Samples subjected to plastic strains ranging from 4 to 17% along a variety of loading paths were characterized using both electron backscatter diffraction (EBSD) and synchrotron X-ray line profile analysis (LPA). It was found that the EBSD-based method gave results which were similar in magnitude to those obtained by LPA and followed a similar trend with increasing plastic strain. The effects of microscope parameters and post-processing of the EBSD data on dislocation density measurements are also discussed. The typical method for estimating uncertainty in dislocation density measured via EBSD was shown to be overly conservative, and a more realistic method of determining uncertainty is presented as an alternative.


Sign in / Sign up

Export Citation Format

Share Document