scholarly journals Multi-Length Scale Characterization of the Gibeon Meteorite using Electron Backscatter Diffraction

2007 ◽  
Vol 15 (5) ◽  
pp. 6-11 ◽  
Author(s):  
Matthew M. Nowell ◽  
John O. Carpenter

The Gibeon meteorite is a differentiated iron meteorite that fell in Nambia, Africa in prehistoric times, with fragments spread over an area 70 miles wide and 230 miles long. The Gibeon fall was initially discovered in 1836, and hundreds of thousands of kilograms of fragments have been recovered. These fragments represent the iron core of a meteorite that cooled and crystallized over thousands of years (Norton 2002).The microstructure of the Gibeon meteorite, which is primarily an iron-nickel alloy, consists of two phases: kamacite, a body-centered cubic material and taenite, a face-centered cubic material that metallurgists would refer to as ferrite and austenite respectively. This material initially crystallizes as taenite, and as the temperature decreases, transforms into kamacite. This meteorite is classified as a Fine Octahedrite (Of) with an average Nickel content of approximately 7.9%

2009 ◽  
Vol 42 (6) ◽  
pp. 1092-1101 ◽  
Author(s):  
Claudio Zambaldi ◽  
Stefan Zaefferer ◽  
Stuart I. Wright

A new approach to resolve the slight tetragonality ofL10-ordered γ-TiAl by electron backscatter diffraction (EBSD) is presented. The phase has ac/aratio of only about 2% larger than unity. The corresponding EBSD patterns therefore exhibit cubic pseudosymmetry. As a consequence, different order variants cannot be easily distinguished on the basis of their EBSD patterns. Automated orientation mapping results in frequent misindexing. In the past, either this problem was overcome by identifying order domains by relatively laborious transmission electron microscopy, or the order domain structure was ignored altogether by using a generic face-centered cubic structure to solve for the crystal orientations, accepting a significant loss of microstructural information. The presented approach is based on the detection of the minor tetragonal distortion of the diffraction patterns by an accurate measurement of backscatter Kikuchi band positions. To this end an accurate pattern center calibration together with high-accuracy parameters for pattern acquisition and indexing are required. Together with a modified indexing algorithm, the order domains in a lamellar microstructure of Ti–45.9Al–8Nb (at%) could be reliably identified. The occurrence of superlattice reflections in the Kikuchi patterns was used to validate the technique. The developed method was successfully applied to create a crystal orientation map of Ti–45.9Al–8Nb (at%) with a fully resolved domain microstructure.


2015 ◽  
Vol 48 (6) ◽  
pp. 1672-1678 ◽  
Author(s):  
Hadi Pirgazi ◽  
Krzysztof Glowinski ◽  
Adam Morawiec ◽  
Leo A. I. Kestens

Five macroscopic boundary parameters can be extracted from three-dimensional orientation maps. Serial sectioning, which includes consecutive steps of material removal, and electron backscatter diffraction (EBSD) measurement were employed to extract a stack of two-dimensional sections of a pure nickel sample. The EBSD patterns were collected from large millimetre scale areas and mechanical polishing was applied to prepare the sections. The three-dimensional microstructure was then reconstructed from these sections. A new alignment algorithm based on the minimization of misorientation between two adjacent sections has been developed to accurately align the sections. Differently from the conventional alignment methods, the new algorithm corrects not only the translational misalignment but also rotational and plane parallelity misalignments. The aligned three-dimensional microstructure exhibits smooth grain boundary planes and continuous orientation gradients inside the grains as experimental scatter induced by misalignment was largely removed. Grain boundaries were reconstructed from the aligned three-dimensional map, and the distribution of boundaries in the domain of five macroscopic boundary parameters was computed using kernel density estimation. Methods for estimating the reliability of the distributions are demonstrated. This distribution is compared with the distributions obtained previously for other face-centered cubic materials, including a different pure nickel sample.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3770
Author(s):  
Francesca Villa ◽  
Adelaide Nespoli ◽  
Francesca Passaretti ◽  
Elena Villa

Among NiTi-based alloys, one of the most promising and exploited alloys is NiTiCu, since the addition of Cu in substitution of Ni in the binary equiatomic NiTi has a significant influence on the martensitic transformation and the thermomechanical properties of the system. A high content of Cu improves the damping properties at the expense of phase homogeneity and workability. The present study focuses on an alloy with a high copper content, i.e., 20 at.%. For this specific composition, the correlation between the thermal treatments, microstructure, formation of secondary phases, and damping properties are investigated by several analyses. The microscopic observation, together with the compositional analysis, allowed the determination of four different phases in the alloy. Both the calorimetry and dynamic thermo mechanical measurements, which confirmed the high damping ability of the alloy, provided a characterization of the martensitic transition. Finally, the electron backscatter diffraction (EBSD) analysis detected the different crystallographic structures (i.e., cubic austenite, orthorhombic martensite, and cubic (face-centered) NiTi2) and their orientation in the different phases. Therefore, the present work aims to improve the knowledge of the role of secondary phases in the optimization of the NiTiCu20 alloy as a valuable alternative to typical alloys used for damping purposes.


2012 ◽  
Vol 18 (4) ◽  
pp. 876-884 ◽  
Author(s):  
Joseph R. Michael ◽  
Bonnie B. McKenzie ◽  
Donald F. Susan

AbstractUnderstanding the growth of whiskers or high aspect ratio features on substrates can be aided when the crystallography of the feature is known. This study has evaluated three methods that utilize electron backscatter diffraction (EBSD) for the determination of the crystallographic growth direction of an individual whisker. EBSD has traditionally been a technique applied to planar, polished samples, and thus the use of EBSD for out-of-surface features is somewhat more difficult and requires additional steps. One of the methods requires the whiskers to be removed from the substrate resulting in the loss of valuable physical growth relationships between the whisker and the substrate. The other two techniques do not suffer this disadvantage and provide the physical growth information as well as the crystallographic growth directions. The final choice of method depends on the information required. The accuracy and the advantages and disadvantages of each method are discussed.


2013 ◽  
Vol 19 (S4) ◽  
pp. 103-104
Author(s):  
C.B. Garcia ◽  
E. Ariza ◽  
C.J. Tavares

Zinc Oxide is a wide band-gap compound semiconductor that has been used in optoelectronic and photovoltaic applications due to its good electrical and optical properties. Aluminium has been an efficient n-type dopant for ZnO to produce low resistivity films and high transparency to visible light. In addition, the improvement of these properties also depends on the morphology, crystalline structure and deposition parameters. In this work, ZnO:Al films were produced by d.c. pulsed magnetron sputtering deposition from a ZnO ceramic target (2.0 wt% Al2O3) on glass substrates, at a temperature of 250 ºC.The crystallographic orientation of aluminum doped zinc oxide (ZnO:Al) thin films has been studied by Electron Backscatter Diffraction (EBSD) technique. EBSD coupled with Scanning Electron Microscopy (SEM) is a powerful tool for the microstructural and crystallographic characterization of a wide range of materials.The investigation by EBSD technique of such films presents some challenges since this analysis requires a flat and smooth surface. This is a necessary condition to avoid any shadow effects during the experiments performed with high tilting conditions (70º). This is also essential to ensure a good control of the three dimensional projection of the crystalline axes on the geometrical references related to the sample.Crystalline texture is described by the inverse pole figure (IPF) maps (Figure 1). Through EBSD analysis it was observed that the external surface of the film presents a strong texture on the basal plane orientation (grains highlighted in red colour). Furthermore it was possible to verify that the grain size strongly depends on the deposition time (Figure 1 (a) and (b)). The electrical and optical film properties improve with increasing of the grain size, which can be mainly, attributed to the decrease in scattering grain boundaries which leads to an increasing in carrier mobility (Figure 2).The authors kindly acknowledge the financial support from the Portuguese Foundation for Science and Technology (FCT) scientific program for the National Network of Electron Microscopy (RNME) EDE/1511/RME/2005.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Tizazu Abza ◽  
Dereje Gelanu Dadi ◽  
Fekadu Gashaw Hone ◽  
Tesfaye Chebelew Meharu ◽  
Gebremeskel Tekle ◽  
...  

Cobalt sulfide thin films were synthesized from acidic chemical baths by varying the deposition time. The powder X-ray diffraction studies indicated that there are hexagonal CoS, face-centered cubic Co3S4, and cubic Co9S8 phases of cobalt sulfide. The crystallite size of the hexagonal CoS phase decreased from 52.8 nm to 22.5 nm and that of the cubic Co9S8 phase increased from 11 nm to 60 nm as the deposition time increased from 2 hrs to 3.5 hrs. The scanning electron microscopic images revealed crack and pinhole free thin films with uniform and smooth background and few large polygonal grains on the surface. The band gap of the cobalt sulfide thin films decreased from 1.75 eV to 1.3 eV as the deposition time increased from 2 hrs to 3.5 hrs. The photoluminescence (PL) spectra of the films confirmed the emission of ultraviolet, violet, and blue lights. The intense PL emission of violet light at 384 nm had red shifted with increasing deposition time that could be resulted from the increase in the average crystallite size. The FTIR spectra of the films indicated the presence of OH, C-O-H, C-O, double sulfide, and Co-S groups. As the deposition time increased, the electrical resistivity of the cobalt sulfide thin films decreased due to the increase in both the crystallite size and the films’ thickness.


Metals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1096
Author(s):  
Henri Tervo ◽  
Antti Kaijalainen ◽  
Vahid Javaheri ◽  
Satish Kolli ◽  
Tuomas Alatarvas ◽  
...  

Deterioration of the toughness in heat-affected zones (HAZs) due to the thermal cycles caused by welding is a known problem in offshore steels. Acicular ferrite (AF) in the HAZ is generally considered beneficial regarding the toughness. Three experimental steels were studied in order to find optimal conditions for the AF formation in the coarse-grained heat-affected zone (CGHAZ). One of the steels was Al-deoxidized, while the other two were Ti-deoxidized. The main focus was to distinguish whether the deoxidation practice affected the AF formation in the simulated CGHAZ. First, two different peak temperatures and prolonged annealing were used to study the prior austenite grain coarsening. Then, the effect of welding heat input was studied by applying three cooling times from 800 °C to 500 °C in a Gleeble thermomechanical simulator. The materials were characterized using electron microscopy, energy-dispersive X-ray spectrometry, and electron backscatter diffraction. The Mn depletion along the matrix-particle interface was modelled and measured. It was found that AF formed in the simulated CGHAZ of one of the Ti-deoxidized steels and its fraction increased with increasing cooling time. In this steel, the inclusions consisted mainly of small (1–4 μm) TiOx-MnS, and the tendency for prior austenite grain coarsening was the highest.


2000 ◽  
Vol 6 (S2) ◽  
pp. 954-955
Author(s):  
Steven R. Claves ◽  
Wojciech Z. Misiolek ◽  
William H. Van Geertruyden ◽  
David B. Williams

Electron Backscattering Diffraction (EBSD) is an important tool for analyzing the crystal grain orientation of a microstructure and can be used to formulate conclusions about microtexture, texture determined from individual grains. This technique has been used to study a 6xxx series aluminum alloy's response to the deformation of the extrusion process. Extrusion is the process by which a billet of material is forced, under high pressure, through a die. The material undergoes a significant decrease in cross sectional area, and is formed into a shape equivalent to the geometry of the die orifice. Different bearing lands are shown in shown in Figure 1. These surfaces form the part, and are designed to control the metal flow making it uniform through the die, thus yielding good mechanical properties. This research was focused on the resultant microstructure. The shaded regions of Figure 2 show the two surface regions where EBSD measurements were taken.


2018 ◽  
Vol 941 ◽  
pp. 176-181 ◽  
Author(s):  
Karin Yvell ◽  
Göran Engberg

The evolution of the deformation structure with strain has been studied using electron backscatter diffraction (EBSD). Samples from interrupted uniaxial tensile tests and from a cyclic tension/compression test were investigated. The evolution of low angle boundaries (LABs) was studied using boundary maps and by measuring the LAB density. From calculations of local misorientations, smaller orientation changes in the substructure can be illustrated. The different orientations developed with strain within a grain, due to operation of different slip systems in different parts of the grain, were studied using a misorientation profile showing substantial orientation changes after a true strain of 0.24. The texture evolution with increasing strain was followed by using inverse pole figures (IPFs). The observed substructure development in the ferritic and austenitic phases could be successfully correlated with the stress-strain curve from a tensile test. LABs were first observed in the different phases when the strain hardening rate changed in appearance indicating that cross slip started to operate as a significant dislocation recovery mechanism. The evolution of the deformation structure is concluded to occur in a similar manner in the austenitic and ferritic phases but with different texture evolution for the two phases.


Sign in / Sign up

Export Citation Format

Share Document