Performance of a Piezoelectric Bimorph Harvester with Variable Width

2007 ◽  
Vol 23 (3) ◽  
pp. 197-202 ◽  
Author(s):  
H. P. Hu ◽  
Z. J. Cui ◽  
J. G. Cao

AbstractThis article analyzes the performance of a piezoelectric energy harvester in the flexural mode for scavenging ambient vibration energy. The energy harvester consists of a piezoelectric bimorph plate with a variable width. A theoretical study is performed and the computational results show that the output power density increases initially, reaches a maximum, and then decreases monotonically with the increasing width, underscoring the importance for the width design of the scavenging structure. Further analysis indicates that the peak of output power density is determined by both the bimorph deformation amplitude and the efficiency in scavenging-energy. The analysis for this simplified model piezoelectric harvester provides a framework for further development on design guidelines for piezoelectric energy harvesters of optimal performance.

Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 803
Author(s):  
Zhongjie Li ◽  
Chuanfu Xin ◽  
Yan Peng ◽  
Min Wang ◽  
Jun Luo ◽  
...  

A novel hybridization scheme is proposed with electromagnetic transduction to improve the power density of piezoelectric energy harvester (PEH) in this paper. Based on the basic cantilever piezoelectric energy harvester (BC-PEH) composed of a mass block, a piezoelectric patch, and a cantilever beam, we replaced the mass block by a magnet array and added a coil array to form the hybrid energy harvester. To enhance the output power of the electromagnetic energy harvester (EMEH), we utilized an alternating magnet array. Then, to compare the power density of the hybrid harvester and BC-PEH, the experiments of output power were conducted. According to the experimental results, the power densities of the hybrid harvester and BC-PEH are, respectively, 3.53 mW/cm3 and 5.14 μW/cm3 under the conditions of 18.6 Hz and 0.3 g. Therefore, the power density of the hybrid harvester is 686 times as high as that of the BC-PEH, which verified the power density improvement of PEH via a hybridization scheme with EMEH. Additionally, the hybrid harvester exhibits better performance for charging capacitors, such as charging a 2.2 mF capacitor to 8 V within 17 s. It is of great significance to further develop self-powered devices.


2021 ◽  
Vol 13 (5) ◽  
pp. 2865 ◽  
Author(s):  
Sungryong Bae ◽  
Pilkee Kim

In this study, optimization of the external load resistance of a piezoelectric bistable energy harvester was performed for primary harmonic (period-1T) and subharmonic (period-3T) interwell motions. The analytical expression of the optimal load resistance was derived, based on the spectral analyses of the interwell motions, and evaluated. The analytical results are in excellent agreement with the numerical ones. A parametric study shows that the optimal load resistance depended on the forcing frequency, but not the intensity of the ambient vibration. Additionally, it was found that the optimal resistance for the period-3T interwell motion tended to be approximately three times larger than that for the period-1T interwell motion, which means that the optimal resistance was directly affected by the oscillation frequency (or oscillation period) of the motion rather than the forcing frequency. For broadband energy harvesting applications, the subharmonic interwell motion is also useful, in addition to the primary harmonic interwell motion. In designing such piezoelectric bistable energy harvesters, the frequency dependency of the optimal load resistance should be considered properly depending on ambient vibrations.


Author(s):  
Guangya Ding ◽  
Hongjun Luo ◽  
Jun Wang ◽  
Guohui Yuan

A novel lever piezoelectric energy harvester (LPEH) was designed for installation in an actual roadway for energy harvesting. The model incorporates a lever module that amplifies the applied traffic load and transmits it to the piezoelectric ceramic. To observe the piezoelectric growth benefits of the optimized LPEH structure, the output characteristics and durability of two energy harvesters, the LPEH and a piezoelectric energy harvester (PEH) without a lever, were measured and compared by carrying out piezoelectric performance tests and traffic model experiments. Under the same loading condition, the open circuit voltages of the LPEH and PEH were 20.6 and 11.7 V, respectively, which represents a 76% voltage increase for the LPEH compared to the PEH. The output power of the LPEH was 21.51 mW at the optimal load, which was three times higher than that of the PEH (7.45 mW). The output power was linearly dependent on frequency and load, implying the potential application of the module as a self-powered speed sensor. When tested during 300,000 loading cycles, the LPEH still exhibited stable structural performance and durability.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Yue Zhao ◽  
Yi Qin ◽  
Lei Guo ◽  
Baoping Tang

Vibration-based energy harvesting technology is the most promising method to solve the problems of self-powered wireless sensor nodes, but most of the vibration-based energy harvesters have a rather narrow operation bandwidth and the operation frequency band is not convenient to adjust when the ambient frequency changes. Since the ambient vibration may be broadband and changeable, a novel V-shaped vibration energy harvester based on the conventional piezoelectric bimorph cantilevered structure is proposed, which successfully improves the energy harvesting efficiency and provides a way to adjust the operation frequency band of the energy harvester conveniently. The electromechanical coupling equations are established by using Euler-Bernoulli equation and piezoelectric equation, and then the coupled circuit equation is derived based on the series connected piezoelectric cantilevers and Kirchhoff's laws. With the above equations, the output performances of V-shaped structure under different structural parameters and load resistances are simulated and discussed. Finally, by changing the angle θ between two piezoelectric bimorph beams and the load resistance, various comprehensive experiments are carried out to test the performance of this V-shaped energy harvester under the same excitation. The experimental results show that the V-shaped energy harvester can not only improve the frequency response characteristic and the output performance of the electrical energy, but also conveniently tune the operation bandwidth; thus it has great application potential in actual structure health monitoring under variable working condition.


2012 ◽  
Vol 1397 ◽  
Author(s):  
Seon-Bae Kim ◽  
Jung-Hyun Park ◽  
Seung-Hyun Kim ◽  
Hosang Ahn ◽  
H. Clyde Wikle ◽  
...  

ABSTRACTA transverse (d33) mode piezoelectric cantilever was fabricated for energy harvesting. Various dimensions of interdigital electrodes (IDE) were deposited on a piezoelectric layer to examine the effects of electrode design on the performance of energy harvesters. Modeling was performed to calculate the output power of the devices. The estimation was based on Roundy’s analytical modeling derived for a d31 mode piezoelectric energy harvester (PEH). In order to apply the Roundy’s model to d33 mode PEH, the IDE configuration was converted to the area of top and bottom electrodes (TBE). The power conversion in d33 mode PEH was commonly estimated by the product of piezoelectric layer’s thickness and finger electrode’s length. In addition, the spacing between fingers was regarded as gap between top and bottom electrodes. However, the output power in a transverse mode PEH increases continuously with the increase of finger spacing, which does not correspond to experimental results. In this research, the dimension of IDE was converted to that of TBE using conformal mapping, and variation of power of PEH was remodeled. The modified model suggests that the maximum power in a transverse mode PEH is obtained when the finger spacing is identical with effective finger spacing. The output power then decreases when finger spacing is larger than effective finger spacing. The decrease of efficiency may result from insufficient degree of poling and increased charged defect with increasing finger spacing.


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3203 ◽  
Author(s):  
Zhenlong Xu ◽  
Hong Yang ◽  
Hao Zhang ◽  
Huawei Ci ◽  
Maoying Zhou ◽  
...  

The approach to improve the output power of piezoelectric energy harvester is one of the current research hotspots. In the case where some sources have two or more discrete vibration frequencies, this paper proposed three types of magnetically coupled multi-frequency hybrid energy harvesters (MHEHs) to capture vibration energy composed of two discrete frequencies. Electromechanical coupling models were established to analyze the magnetic forces, and to evaluate the power generation characteristics, which were verified by the experimental test. The optimal structure was selected through the comparison. With 2 m/s2 excitation acceleration, the optimal peak output power was 2.96 mW at 23.6 Hz and 4.76 mW at 32.8 Hz, respectively. The superiority of hybrid energy harvesting mechanism was demonstrated. The influences of initial center-to-center distances between two magnets and length of cantilever beam on output power were also studied. At last, the frequency sweep test was conducted. Both theoretical and experimental analyses indicated that the proposed MHEH produced more electric power over a larger operating bandwidth.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 973
Author(s):  
Marwa S. Salem ◽  
Shimaa Ahmed ◽  
Ahmed Shaker ◽  
Mohammad T. Alshammari ◽  
Kawther A. Al-Dhlan ◽  
...  

One of the most important challenges in the design of the piezoelectric energy harvester is its narrow bandwidth. Most of the input vibration sources are exposed to frequency variation during their operation. The piezoelectric energy harvester’s narrow bandwidth makes it difficult for the harvester to track the variations of the input vibration source frequency. Thus, the harvester’s output power and overall performance is expected to decline from the designed value. This current study aims to solve the problem of the piezoelectric energy harvester’s narrow bandwidth. The main objective is to achieve bandwidth broadening which is carried out by segmenting the piezoelectric material of the energy harvester into n segments; where n could be more than one. Three arrays with two, four, and six beams are shaped with two piezoelectric segments. The effect of changing the length of the piezoelectric material segment on the resonant frequency, output power, and bandwidth, as well as the frequency response is investigated. The proposed piezoelectric energy harvesters were implemented utilizing a finite element method (FEM) simulation in a MATLAB environment. The results show that increasing the number of array beams increases the output power and bandwidth. For the three-beam arrays, at n equals 2, 6 mW output power and a 9 Hz bandwidth were obtained. Moreover, the bandwidth of such arrays covered around 5% deviation from its resonant frequency. All structures were designed to operate as a steel wheel safety sensor which could be used in train tracks.


2019 ◽  
Vol 20 (1) ◽  
pp. 245-257
Author(s):  
Huda Azam ◽  
Noor Hazrin Hany Mohamad Hanif ◽  
Aliza Aini Md Ralib

ABSTRACT: Piezoelectric energy harvesting is a possible breakthrough to reduce the global issue of electronic waste as they can efficiently convert the ambient vibration to the electrical energy without any additional power. This work presents the design and development of a piezoelectric energy harvester that is capable of transforming vibration from ambient sources into electricity. It focuses on a magnetically plucked piezoelectric beam as an alternative to the mechanically induced harvesters, as the latter are subjected to wear and tear. A prototype comprising of a 40 mm PZT-5H piezoelectric beam with a permanent magnet mounted at one end of the beam, as well as a series of permanent magnets of same types attached on an eccentric rotor was developed along with a National Instruments® data acquisition device. Mean output voltages of 2.98 V, 1.76 V and 0.34 V were recorded when the eccentric rotors were slowly rotated at 8.4 rad/s with increasing distances of 5 mm, 7.5 mm and 10 mm respectively, between the magnets on the rotor and the beam. These results have proven that voltage could also be generated by magnetically plucking the piezoelectric beam, and by reducing the distance between magnets, the amount of voltage generated will be higher. The outcome of this work signifies the possibility for implementation of energy harvesters that are capable of powering electronic devices from hybrid kinetic motion, with a reduced risk of equipment fatigue. ABSTRAK: Penjanaan tenaga melalui piezoelektrik adalah satu penemuan terbesar dalam mengurangkan isu global pengurusan sisa elektronik. Ini kerana ia berupaya mengubah getaran persekitaran kepada tenaga elektrik tanpa sebarang tambahan tenaga. Kajian ini berkenaan reka bentuk dan pembangunan penjana tenaga piezoelektrik yang mampu mengubah getaran persekitaran kepada elektrik. Fokus kajian adalah pada penjanaan tenaga secara magnetik dari bilah piezoelektrik sebagai alternatif kepada penjanaan mekanikal, kerana penjanaan tenaga secara mekanikal berisiko tinggi kepada kerosakan alat dalam jangkamasa panjang. Prototaip piezoelektrik PZT-5H yang berukuran 40 mm ini telah dilengkapi magnet kekal pada hujung bilah, serta satu siri magnet kekal jenis sama turut dipasang pada pemutar eksentrik bersama peranti pengambilan data National Instruments®. Secara purata, sebanyak 2.98 V, 1.76 V dan 0.34 V voltan output telah direkodkan ketika pemutar eksentrik berputar perlahan pada 8.4 rad/s dengan jarak tambahan antara magnet pemutar dan bilah piezoelektrik bersamaan 5 mm, 7.5 mm dan 10 mm, masing-masing. Keputusan menunjukkan tenaga dapat dihasilkan dengan cara pemacuan piezoelektrik secara magnetik, dan tenaga yang terhasil akan bertambah dengan pengurangan jarak antara magnet. Hasil kerja menunjukkan tenaga dapat dihasilkan daripada gerakan kinetik hibrid, dengan risiko rendah pada kerosakan alat.


2015 ◽  
Vol 752-753 ◽  
pp. 934-940 ◽  
Author(s):  
Hanim Salleh ◽  
Mun Heng Lam ◽  
Linasuriani Muhamad ◽  
Mohd Firdaus bin Jaafar

Harvesting energy from vibrations has received massive attention due to it being a renewable energy source that has a wide range of applications. Over the years of development, there is always research to further improve and optimise piezoelectric energy harvesters. This paper presents work on improving piezoelectric energy harvesters based on the structural modifications. Four different strategies of structural modification are employed for optimization by using additional beam structure as well as incorporation of rubber layer. This work summarized the optimum performance of the strategies at a resonance frequency of 60 + 2 Hz at 0.25g. The parameters compared among the strategies are voltage, power, PZT power density, spatial power density and specific power density. The results are also compared with other similar work. In general, structure with an addition of silicon rubber beam was found to give the best power density output and produce 253% increase of power ouput as compared to basic PZT energy harvester.


Sign in / Sign up

Export Citation Format

Share Document