scholarly journals On the nature of ultra-luminous X-ray sources from optical/IR measurements

2006 ◽  
Vol 2 (S238) ◽  
pp. 251-254
Author(s):  
Mark Cropper ◽  
Chris Copperwheat ◽  
Roberto Soria ◽  
Kinwah Wu

AbstractWe present a model for the prediction of the optical/infra-red emission from ULXs. In the model, ULXs are binary systems with accretion taking place through Roche lobe overflow. We show that irradiation effects and presence of an accretion disk significantly modify the optical/infrared flux compared to single stars, and also that the system orientation is important. We include additional constraints from the mass transfer rate to constrain the parameters of the donor star, and to a lesser extent the mass of the BH. We apply the model to fit photometric data for several ULX counterparts. We find that most donor stars are of spectral type B and are older and less massive than reported elsewhere, but that no late-type donors are admissible. The degeneracy of the acceptable parameter space will be significantly reduced with observations over a wider spectral range, and if time-resolved data become available.

2009 ◽  
Vol 42 (3) ◽  
pp. 392-400 ◽  
Author(s):  
I. B. Ramsteiner ◽  
A. Schöps ◽  
H. Reichert ◽  
H. Dosch ◽  
V. Honkimäki ◽  
...  

Diffuse X-ray scattering has been an important tool for understanding the atomic structure of binary systems for more than 50 years. The majority of studies have used laboratory-based sources providing 8 keV photons or synchrotron radiation with similar energies. Diffuse scattering is weak, with the scattering volume determined by the X-ray absorption length. In the case of 8 keV photons, this is not significantly different from the typical extinction length for Bragg scattering. If, however, one goes to energies of the order of 100 keV the scattering volume for the diffuse scattering increases up to three orders of magnitude while the extinction length increases by only one order of magnitude. This leads to a gain of two orders of magnitude in the relative intensity of the diffuse scattering compared with the Bragg peaks. This gain, combined with the possibility of recording the intensity from an entire plane in reciprocal space using a two-dimensional X-ray detector, permits time-resolved diffuse scattering studies in many systems. On the other hand, diffraction features that are usually neglected, such as multiple scattering, come into play. Four types of multiple scattering phenomena are discussed, and the manner in which they appear in high-energy diffraction experiments is considered.


2021 ◽  
Vol 922 (2) ◽  
pp. 174
Author(s):  
Kenny X. Van ◽  
Natalia Ivanova

Abstract We present a new method for constraining the mass transfer evolution of low-mass X-ray binaries (LMXBs)—a reverse population synthesis technique. This is done using the detailed 1D stellar evolution code MESA (Modules for Experiments in Stellar Astrophysics) to evolve a high-resolution grid of binary systems spanning a comprehensive range of initial donor masses and orbital periods. We use the recently developed convection and rotation-boosted (CARB) magnetic braking scheme. The CARB magnetic braking scheme is the only magnetic braking prescription capable of reproducing an entire sample of well-studied persistent LMXBs—those with mass ratios, periods, and mass transfer rates that have been observationally determined. Using the reverse population synthesis technique, where we follow any simulated system that successfully reproduces an observed LMXB backward, we have constrained possible progenitors for each observed well-studied persistent LMXB. We also determined that the minimum number of LMXB formations in the Milky Way is 1500 per Gyr if we exclude Cyg X-2. For Cyg X-2, the most likely formation rate is 9000 LMXB Gyr−1. The technique we describe can be applied to any observed LMXB with well-constrained mass ratio, period, and mass transfer rate. With the upcoming GAIA DR3 containing information on binary systems, this technique can be applied to the data release to search for progenitors of observed persistent LMXBs.


2020 ◽  
Vol 642 ◽  
pp. A174 ◽  
Author(s):  
D. Misra ◽  
T. Fragos ◽  
T. M. Tauris ◽  
E. Zapartas ◽  
D. R. Aguilera-Dena

Context. Ultra-luminous X-ray sources (ULXs) are those X-ray sources located away from the centre of their host galaxy with luminosities exceeding the Eddington limit of a stellar-mass black hole (LX >  1039 erg s−1). Observed X-ray variability suggests that ULXs are X-ray binary systems. The discovery of X-ray pulsations in some of these objects (e.g. M82 X-2) suggests that a certain fraction of the ULX population may have a neutron star as the accretor. Aims. We present systematic modelling of low- and intermediate-mass X-ray binaries (LMXBs and IMXBs; donor-star mass range 0.92–8.0 M⊙ and neutron-star accretors) to explain the formation of this sub-population of ULXs. Methods. Using MESA, we explored the allowed initial parameter space of binary systems consisting of a neutron star and a low- or intermediate-mass donor star that could explain the observed properties of ULXs. These donors are transferring mass at super-Eddington rates while the accretion is limited locally in the accretion disc by the Eddington limit. Thus, our simulations take into account beaming effects and also include stellar rotation, tides, general angular momentum losses, and a detailed and self-consistent calculation of the mass-transfer rate. Results. Exploring the initial parameters that lead to the formation of neutron-star ULXs, we study the conditions that lead to dynamical stability of these systems, which depends strongly on the response of the donor star to mass loss. Using two values for the initial neutron star mass (1.3 M⊙ and 2.0 M⊙), we present two sets of mass-transfer calculation grids for comparison with observations of NS ULXs. We find that LMXBs/IMXBs can produce NS-ULXs with typical time-averaged isotropic-equivalent X-ray luminosities of between 1039 and 1041 erg s−1 on a timescale of up to ∼1.0 Myr for the lower luminosities. Finally, we estimate their likelihood of detection, the types of white-dwarf remnants left behind by the donors, and the total amount of mass accreted by the neutron stars. Conclusions. We show that observed super-Eddington luminosities can be achieved in LMXBs/IMXBs undergoing non-conservative mass transfer while assuming geometrical beaming. We also compare our results to the observed pulsating ULXs and infer their initial parameters. Our results suggest that a large subset of the observed pulsating ULX population can be explained by LMXBs/IMXBs in a super-Eddington mass-transfer phase.


Author(s):  
Eva-Maria Mandelkow ◽  
Eckhard Mandelkow ◽  
Joan Bordas

When a solution of microtubule protein is changed from non-polymerising to polymerising conditions (e.g. by temperature jump or mixing with GTP) there is a series of structural transitions preceding microtubule growth. These have been detected by time-resolved X-ray scattering using synchrotron radiation, and they may be classified into pre-nucleation and nucleation events. X-ray patterns are good indicators for the average behavior of the particles in solution, but they are difficult to interpret unless additional information on their structure is available. We therefore studied the assembly process by electron microscopy under conditions approaching those of the X-ray experiment. There are two difficulties in the EM approach: One is that the particles important for assembly are usually small and not very regular and therefore tend to be overlooked. Secondly EM specimens require low concentrations which favor disassembly of the particles one wants to observe since there is a dynamic equilibrium between polymers and subunits.


Author(s):  
C. Wolpers ◽  
R. Blaschke

Scanning microscopy was used to study the surface of human gallstones and the surface of fractures. The specimens were obtained by operation, washed with water, dried at room temperature and shadowcasted with carbon and aluminum. Most of the specimens belong to patients from a series of X-ray follow-up study, examined during the last twenty years. So it was possible to evaluate approximately the age of these gallstones and to get information on the intensity of growing and solving.Cholesterol, a group of bile pigment substances and different salts of calcium, are the main components of human gallstones. By X-ray diffraction technique, infra-red spectroscopy and by chemical analysis it was demonstrated that all three components can be found in any gallstone. In the presence of water cholesterol crystallizes in pane-like plates of the triclinic crystal system.


Author(s):  
Douglas L. Dorset

A variety of linear chain materials exist as polydisperse systems which are difficultly purified. The stability of continuous binary solid solutions assume that the Gibbs free energy of the solution is lower than that of either crystal component, a condition which includes such factors as relative molecular sizes and shapes and perhaps the symmetry of the pure component crystal structures.Although extensive studies of n-alkane miscibility have been carried out via powder X-ray diffraction of bulk samples we have begun to examine binary systems as single crystals, taking advantage of the well-known enhanced scattering cross section of matter for electrons and also the favorable projection of a paraffin crystal structure posited by epitaxial crystallization of such samples on organic substrates such as benzoic acid.


Author(s):  
Eva-Maria Mandelkow ◽  
Ron Milligan

Microtubules form part of the cytoskeleton of eukaryotic cells. They are hollow libers of about 25 nm diameter made up of 13 protofilaments, each of which consists of a chain of heterodimers of α-and β-tubulin. Microtubules can be assembled in vitro at 37°C in the presence of GTP which is hydrolyzed during the reaction, and they are disassembled at 4°C. In contrast to most other polymers microtubules show the behavior of “dynamic instability”, i.e. they can switch between phases of growth and phases of shrinkage, even at an overall steady state [1]. In certain conditions an entire solution can be synchronized, leading to autonomous oscillations in the degree of assembly which can be observed by X-ray scattering (Fig. 1), light scattering, or electron microscopy [2-5]. In addition such solutions are capable of generating spontaneous spatial patterns [6].In an earlier study we have analyzed the structure of microtubules and their cold-induced disassembly by cryo-EM [7]. One result was that disassembly takes place by loss of protofilament fragments (tubulin oligomers) which fray apart at the microtubule ends. We also looked at microtubule oscillations by time-resolved X-ray scattering and proposed a reaction scheme [4] which involves a cyclic interconversion of tubulin, microtubules, and oligomers (Fig. 2). The present study was undertaken to answer two questions: (a) What is the nature of the oscillations as seen by time-resolved cryo-EM? (b) Do microtubules disassemble by fraying protofilament fragments during oscillations at 37°C?


Swiss Surgery ◽  
2003 ◽  
Vol 9 (6) ◽  
pp. 283-288
Author(s):  
Maurer ◽  
Stamenic ◽  
Stouthandel ◽  
Ackermann ◽  
Gonzenbach

Aim of study: To investigate the short- and long-term outcome of patients with isolated lateral malleolar fracture type B treated with a single hemicerclage out of metallic wire or PDS cord. Methods: Over an 8-year period 97 patients were treated with a single hemicerclage for lateral malleolar fracture type B and 89 were amenable to a follow-up after mean 39 months, including interview, clinical examination and X-ray controls. Results: The median operation time was 35 minutes (range 15-85 min). X-ray controls within the first two postoperative days revealed an anatomical restoration of the upper ankle joint in all but one patient. The complication rate was 8%: hematoma (2 patients), wound infection (2), Sudeck's dystrophy (2) and deep vein thrombosis (1). Full weight-bearing was tolerated at median 6.0 weeks (range 2-26 weeks). No secondary displacement, delayed union or consecutive arthrosis of the upper ankle joint was observed. All but one patient had restored symmetric joint mobility. Ninety-seven percent of patients were satisfied or very satisfied with the outcome. Following bone healing, hemicerclage removal was necessary in 19% of osteosyntheses with metallic wire and in none with PDS cord. Conclusion: The single hemicerclage is a novel, simple and reliable osteosynthesis technique for isolated lateral type B malleolar fractures and may be considered as an alternative to the osteosynthesis procedures currently in use.


2018 ◽  
Vol 189 (02) ◽  
pp. 187-194 ◽  
Author(s):  
Nikita V. Marchenkov ◽  
Anton G. Kulikov ◽  
Ivan I. Atknin ◽  
Arsen A. Petrenko ◽  
Alexander E. Blagov ◽  
...  

2020 ◽  
Author(s):  
Luzia S. Germann ◽  
Sebastian T. Emmerling ◽  
Manuel Wilke ◽  
Robert E. Dinnebier ◽  
Mariarosa Moneghini ◽  
...  

Time-resolved mechanochemical cocrystallisation studies have so-far focused solely on neat and liquid-assisted grinding. Here, we report the monitoring of polymer-assisted grinding reactions using <i>in situ</i> X-ray powder diffraction, revealing that reaction rate is almost double compared to neat grinding and independent of the molecular weight and amount of used polymer additives.<br>


Sign in / Sign up

Export Citation Format

Share Document