scholarly journals Planetesimal Formation in Zonal Flows Arising in Magneto-Rotationally-Unstable Protoplanetary Disks

2012 ◽  
Vol 8 (S293) ◽  
pp. 244-249
Author(s):  
Karsten Dittrich ◽  
Hubert Klahr ◽  
Anders Johansen

AbstractRecent simulations show long -lived sub- and super-Keplerian flows in protoplanetary disks. These so-called zonal flows are found in local as well as global simulations of magneto-rotationally unstable disks. We investigate the strength and life-time of the resulting long-lived gas over- and under-densities as well as particle concentrations function of the azimuthal and radial size of the local shearing box. Changes in the azimuthal extent do not affect the zonal flow features. However, strength and life-time of zonal flows increase with increasing radial box sizes. Our simulations show indications, and support earlier results, that zonal flows have a natural length scale of approximately 5 pressure scale heights. For the first time, the reaction of dust particles in boxes with zonal flows are studied. We show that particles of some centimeters in size reach a hundred-fold higher density than initially, without any self-gravitating forces acting on the point masses. We further investigate collision velocities of dust grains in a turbulent medium.

2022 ◽  
Vol 924 (1) ◽  
pp. 3
Author(s):  
Ziyan Xu ◽  
Xue-Ning Bai

Abstract Planetesimal formation is a crucial yet poorly understood process in planet formation. It is widely believed that planetesimal formation is the outcome of dust clumping by the streaming instability (SI). However, recent analytical and numerical studies have shown that the SI can be damped or suppressed by external turbulence, and at least the outer regions of protoplanetary disks are likely weakly turbulent due to magneto-rotational instability (MRI). We conduct high-resolution local shearing-box simulations of hybrid particle-gas magnetohydrodynamics (MHD), incorporating ambipolar diffusion as the dominant nonideal MHD effect, applicable to outer disk regions. We first show that dust backreaction enhances dust settling toward the midplane by reducing turbulence correlation time. Under modest level of MRI turbulence, we find that dust clumping is in fact easier than the conventional SI case, in the sense that the threshold of solid abundance for clumping is lower. The key to dust clumping includes dust backreaction and the presence of local pressure maxima, which in our work is formed by the MRI zonal flows overcoming background pressure gradient. Overall, our results support planetesimal formation in the MRI-turbulent outer protoplanetary disks, especially in ring-like substructures.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 125
Author(s):  
Mariola Jabłońska ◽  
Janusz Janeczek ◽  
Beata Smieja-Król

For the first time, it is shown that inhaled ambient air-dust particles settled in the human lower respiratory tract induce lung calcification. Chemical and mineral compositions of pulmonary calcium precipitates in the lung right lower-lobe (RLL) tissues of 12 individuals who lived in the Upper Silesia conurbation in Poland and who had died from causes not related to a lung disorder were determined by transmission and scanning electron microscopy. Whereas calcium salts in lungs are usually reported as phosphates, calcium salts precipitated in the studied RLL tissue were almost exclusively carbonates, specifically Mg-calcite and calcite. These constituted 37% of the 1652 mineral particles examined. Mg-calcite predominated in the submicrometer size range, with a MgCO3 content up to 50 mol %. Magnesium plays a significant role in lung mineralization, a fact so far overlooked. The calcium phosphate (hydroxyapatite) content in the studied RLL tissue was negligible. The predominance of carbonates is explained by the increased CO2 fugacity in the RLL. Carbonates enveloped inhaled mineral-dust particles, including uranium-bearing oxides, quartz, aluminosilicates, and metal sulfides. Three possible pathways for the carbonates precipitation on the dust particles are postulated: (1) precipitation of amorphous calcium carbonate (ACC), followed by its transformation to calcite; (2) precipitation of Mg-ACC, followed by its transformation to Mg-calcite; (3) precipitation of Mg-free ACC, causing a localized relative enrichment in Mg ions and subsequent heterogeneous nucleation and crystal growth of Mg-calcite. The actual number of inhaled dust particles may be significantly greater than was observed because of the masking effect of the carbonate coatings. There is no simple correlation between smoking habit and lung calcification.


2018 ◽  
Vol 615 ◽  
pp. A154 ◽  
Author(s):  
F. J. Pozuelos ◽  
E. Jehin ◽  
Y. Moulane ◽  
C. Opitom ◽  
J. Manfroid ◽  
...  

Context. Thanks to the Rosetta mission, our understanding of comets has greatly improved. A very good opportunity to apply this knowledge appeared in early 2017 with the appearance of the Jupiter family comet 41P/Tuttle–Giacobini–Kresak. The comet was only 0.15 au from the Earth as it passed through perihelion on April 12, 2017. We performed an observational campaign with the TRAPPIST telescopes that covered almost the entire period of time when the comet was active. Aims. In this work we present a comprehensive study of the evolution of the dust environment of 41P based on observational data from January to July, 2017. In addition, we performed numerical simulations to constrain its origin and dynamical nature. Methods. To model the observational data set we used a Monte Carlo dust tail model, which allowed us to derive the dust parameters that best describe its dust environment as a function of heliocentric distance: its dust production rate, the size distribution and ejection velocities of the dust particles, and its emission pattern. In order to study its dynamical evolution, we completed several experiments to evaluate the degree of stability of its orbit, its life time in its current region close to Earth, and its future behaviour. Results. From the dust analysis, we found that comet 41P is a dust-poor comet compared to other comets of the same family, with a complex emission pattern that shifted from full isotropic to anisotropic ejection sometime during February 24–March 14 in 2017, and then from anisotropic to full isotropic again between June 7 and 28. During the anisotropic period, the emission was controlled by two strongly active areas, where one was located in the southern and one in the northern hemisphere of the nucleus. The total dust mass loss is estimated to be ~7.5 × 108 kg. From the dynamical simulations we estimate that ~3600 yr is the period of time during which 41P will remain in a similar orbit. Taking into account the estimated mass loss per orbit, after 3600 yr, the nucleus may lose about 30% of its mass. However, based on its observed dust-to-water mass ratio and its propensity to outbursts, the lifetime of this comet could be much shorter.


Author(s):  
Mariola Jablonska ◽  
Janusz Janeczek ◽  
Beata Smieja-Król

For the first time, it is shown that inhaled ambient air-dust particles settled in the human lower respiratory tract induce lung calcification. Chemical- and mineral compositions of pulmonary calcium precipitates in the lung right lower-lobe (RLL) tissues of 12 individuals who lived in Upper Silesia Conurbation in Poland and who had died from causes not related to lung disorder were determined by transmission- and scanning electron microscopy. Whereas calcium salts in lungs are usually reported as phosphates, calcium salts precipitated in RLL are almost exclusively carbonates, i.e. Mg-calcite and calcite. These constitute 37% of 1652 mineral particles examined. Mg-calcite predominates in the submicron size range with the MgCO3 content up to 50 mol%. Magnesium plays a significant role in the lung mineralization, a fact so far overlooked. The calcium phosphate (hydroxyapatite) content in RLL is negligible. The predominance of carbonates is explained by increased CO2 fugacity in RLL. Carbonates enveloped inhaled mineral-dust particles, including uranium-bearing oxides, quartz, aluminosilicates, and metal sulfides. Three possible pathways for the carbonates precipitation on the dust particles are postulated: (1) precipitation of amorphous calcium carbonate (ACC) followed by its transformation to calcite; (2) precipitation of Mg-ACC followed by its transformation to Mg-calcite; (3) precipitation of Mg-free ACC causing a localized relative enrichment in Mg ions and subsequent heterogeneous nucleation and crystal growth of Mg-calcite. The actual number of inhaled dust particles may be significantly greater than observed because of the masking effect of the carbonate coatings. There is no simple correlation between smoking habit and lung calcification.


2012 ◽  
Vol 538 ◽  
pp. A114 ◽  
Author(s):  
P. Pinilla ◽  
T. Birnstiel ◽  
L. Ricci ◽  
C. P. Dullemond ◽  
A. L. Uribe ◽  
...  

2008 ◽  
Vol 74 (3) ◽  
pp. 381-389 ◽  
Author(s):  
Yu. A. ZALIZNYAK ◽  
A. I. YAKIMENKO ◽  
V. M. LASHKIN

AbstractThe generation of large-scale zonal flows by small-scale electrostatic drift waves in electron temperature gradient driven turbulence model is considered. The generation mechanism is based on the modulational instability of a finite amplitude monochromatic drift wave. The threshold and growth rate of the instability as well as the optimal spatial scale of zonal flow are obtained.


Author(s):  
Maruf Mohammad Akbor ◽  
Nobuyuki Kurosawa ◽  
Masashi Tanaka ◽  
Masaharu Isobe

Abstract Amyloid beta (Aβ) 42 peptide accumulated in Alzheimer disease (AD) patients’ brain, often colocalized with serine protease inhibitor family A member 3 (SERPINA3). Being a chaperon, SERPINA3 accelerated Aβ42 fibrillization. While analyzing chaperon activity of human SERPINA3 polymorphisms, we found SERPINA3-R124C played a role in protecting cells from Aβ42 cytotoxicity. SH-SY5Y cells exposed to Aβ42 preincubated with wild type SERPINA3 (SERPINA3-WT) resulted in extended toxicity leading cell death whereas Aβ42 with SERPINA3-R124C resulted in less cytotoxicity. Transmission electron microscope and thioflavin T assay revealed that SERPINA3-R124C shortened life time of small soluble oligomer and maintained β-sheet rich protofibril-like aggregates for longer time compared to that of with SERPINA3-WT. Western blot assay confirmed that SERPINA3-R124C converted Aβ42 mostly into high molecular aggregates. Here, we demonstrate first time that polymorphic SERPINA3 acts as a benign chaperon by modulating the transition states of Aβ42, which may contribute to the reduction of AD risk.


2020 ◽  
Vol 86 (3) ◽  
Author(s):  
A. Biancalani ◽  
A. Bottino ◽  
P. Lauber ◽  
A. Mishchenko ◽  
F. Vannini

Numerical simulations of Alfvén modes driven by energetic particles are performed with the gyrokinetic (GK) global particle-in-cell code ORB5. A reversed shear equilibrium magnetic field is adopted. A simplified configuration with circular flux surfaces and large aspect ratio is considered. The nonlinear saturation of beta-induced Alfvén eigenmodes (BAE) is investigated. The roles of the wave–particle nonlinearity of the different species, i.e. thermal ions, electrons and energetic ions are described, in particular for their role in the saturation of the BAE and the generation of zonal flows. The nonlinear redistribution of the electron population is found to be important in increasing the BAE saturation level and the zonal flow amplitude.


2016 ◽  
Author(s):  
Carlos Ordóñez ◽  
David Barriopedro ◽  
Ricardo García-Herrera ◽  
Pedro M. Sousa ◽  
Jordan L. Schnell

Abstract. This paper analyses for the first time the impact of high-latitude blocks and subtropical ridges on near-surface ozone in Europe during a 15-year period. For this purpose, a catalogue of blocks and ridges over the Euro-Atlantic region is used together with a gridded dataset of maximum daily 8-hour running average ozone (MDA8 O3) covering the period 1998–2012. The response of ozone to the location of blocks and ridges with centres in three longitudinal sectors (Atlantic, ATL, 30º–0º W; European, EUR, 0º–30º E; Russian, RUS, 30º–60º E) is examined. The impact of blocks on ozone is regionally and seasonally dependent. In particular, blocks within the EUR sector yield positive ozone anomalies of ~ 5–10 ppb over large parts of central Europe in spring and northern Europe in summer. Over 20 % and 30 % of the days with blocks in that sector register exceedances of the 90th percentile of the seasonal ozone distribution at many European locations during spring and summer, respectively. The impacts of ridges during those seasons are subtle and more sensitive to their specific location, although they can trigger ozone anomalies of ~ 5–10 ppb in Italy and the surrounding countries in summer, eventually exceeding European air quality targets. During winter, surface ozone in the northwest of Europe presents completely opposite responses to blocks and ridges. The anticyclonic circulation associated with winter EUR blocking, and to a lesser extent with ATL blocking, yields negative ozone anomalies between −5 ppb and −10 ppb over the UK, Northern France and the Benelux. Conversely, the enhanced zonal flow around 50˚–60˚ N during the occurrence of ATL ridges favours the arrival of background air masses from the Atlantic and the ventilation of the boundary layer, producing positive ozone anomalies above 5 ppb in an area spanning from the British Isles to Germany. This work provides the first quantitative assessments of the remarkable but distinct impacts that the anticyclonic circulation and the diversion of the zonal flow associated with blocks and ridges exert on surface ozone in Europe. The findings reported here can be exploited in the future to evaluate the modelled responses of ozone to circulation changes within chemical transport models (CTMs) and chemistry-climate models (CCMs).


2018 ◽  
Vol 618 ◽  
pp. A75 ◽  
Author(s):  
Noemi Schaffer ◽  
Chao-Chin Yang ◽  
Anders Johansen

The radial drift and diffusion of dust particles in protoplanetary disks affect both the opacity and temperature of such disks, as well as the location and timing of planetesimal formation. In this paper, we present results of numerical simulations of particle-gas dynamics in protoplanetary disks that include dust grains with various size distributions. We have considered three scenarios in terms of particle size ranges, one where the Stokes number τs = 10−1−100, one where τs = 10−4−10−1, and finally one where τs = 10−3−100. Moreover, we considered both discrete and continuous distributions in particle size. In accordance with previous works we find in our multispecies simulations that different particle sizes interact via the gas and as a result their dynamics changes compared to the single-species case. The larger species trigger the streaming instability and create turbulence that drives the diffusion of the solid materials. We measured the radial equilibrium velocity of the system and find that the radial drift velocity of the large particles is reduced in the multispecies simulations and that the small particle species move on average outwards. We also varied the steepness of the size distribution, such that the exponent of the solid number density distribution, dN∕da ∝ a−q, is either q = 3 or q = 4. Overall, we find that the steepness of the size distribution and the discrete versus continuous approach have little impact on the results. The level of diffusion and drift rates are mainly dictated by the range of particle sizes. We measured the scale height of the particles and observe that small grains are stirred up well above the sedimented midplane layer where the large particles reside. Our measured diffusion and drift parameters can be used in coagulation models for planet formation as well as to understand relative mixing of the components of primitive meteorites (matrix, chondrules and CAIs) prior to inclusion in their parent bodies.


Sign in / Sign up

Export Citation Format

Share Document