Re-evaluation of an early sphenacodontian synapsid from the Lower Permian of England

Author(s):  
Frederik SPINDLER

ABSTRACTThe holotypic isolated maxilla of the early sphenacodontian Haptodus grandis from the Cisuralian of England is revisited. A unique character combination includes haptodontine-grade traits like less specialised teeth and a high number of precanines, but at the same time a shortened lacrimal that is separated from the naris, which is strongly diagnostic of Sphenacodontoidea. As the specimen cannot be assigned to any known taxon, the new taxon Hypselohaptodus grandis gen. nov. is proposed. Comparison with other sphenacodontians reveals a mosaic distribution of maxillary features, most significantly regarding the precanine region. Preliminary character histories preclude Hypselohaptodus from Sphenacodontidae, but suggest a haptodontine-grade or basal therapsid position. The latter hypothesis is substantiated by an ecological model of episodic wet phases in an overall trend of aridification throughout the Permian, to explain the rareness of non-sphenacodontid sphenacodontians in the fossil record. Also from the early Permian of England, an isolated dentary has previously been assigned to Ophiacodon, but can be shown to be either a sphenacodontian, possibly affiliated with Hypselohaptodus, or a robust, Stereorhachis-like ophiacodontid. The absence of Ophiacodon in the intramontaneous Permian basis of Europe is explained by a narrow environmental tolerance range requiring limnic connection with lowland basins.

2011 ◽  
Vol 278 (1725) ◽  
pp. 3731-3737 ◽  
Author(s):  
Robert R. Reisz ◽  
Sean P. Modesto ◽  
Diane M. Scott

The initial stages of evolution of Diapsida (the large clade that includes not only snakes, lizards, crocodiles and birds, but also dinosaurs and numerous other extinct taxa) is clouded by an exceedingly poor Palaeozoic fossil record. Previous studies had indicated a 38 Myr gap between the first appearance of the oldest diapsid clade (Araeoscelidia), ca 304 million years ago (Ma), and that of its sister group in the Middle Permian ( ca 266 Ma). Two new reptile skulls from the Richards Spur locality, Lower Permian of Oklahoma, represent a new diapsid reptile: Orovenator mayorum n. gen. et sp. A phylogenetic analysis identifies O. mayorum as the oldest and most basal member of the araeoscelidian sister group. As Richards Spur has recently been dated to 289 Ma, the new diapsid neatly spans the above gap by appearing 15 Myr after the origin of Diapsida. The presence of O. mayorum at Richards Spur, which records a diverse upland fauna, suggests that initial stages in the evolution of non-araeoscelidian diapsids may have been tied to upland environments. This hypothesis is consonant with the overall scant record for non-araeoscelidian diapsids during the Permian Period, when the well-known terrestrial vertebrate communities are preserved almost exclusively in lowland deltaic, flood plain and lacustrine sedimentary rocks.


2016 ◽  
Vol 90 (6) ◽  
pp. 1049-1067 ◽  
Author(s):  
Olga L. Kossovaya ◽  
Matevž Novak ◽  
Dieter Weyer

AbstractA new monospecific “caninioid” genus,Preisingerellan. gen., from the lower Permian of the Karavanke Mountains (Southern Alps, Slovenia) is erected. The type species isPreisingerella stegovnikensisn. sp. The new taxon can be differentiated from otherCaninia-type genera by its specific ontogeny and features of its dissepimentarium. Corals with such morphology had a wide distribution during the Carboniferous and early Permian, occurring in mostly shallow-water carbonate rocks. The phylogenetic relationships within this group are mostly unclear due to similarities in the adult stages. The earlier stages reveal the main distinguishing features that are decisive for a generic assignment, but these have rarely been well preserved and properly considered. The new taxon is compared with related genera of the Cyathopsidae and species ofCaninellaGorskiy, 1938 characterized by lateral dissepiments. Large numbers of specimens of the new species, representing a monospecific assemblage, have been collected from the Born Formation at Mt. Stegovnik. Sedimentological and microfacies characteristics, as well as macro- and microfossil assemblages, underline this correlation. The fusulinoidean assemblage of the Born Formation, withSphaeroschwagerina carniolica(Kahler and Kahler, 1937), as the predominant species, corresponds to the time span between theSphaeroschwagerina moelleri-Schwagerina fecundaandPseudofusulina moellerizones, indicating a late Asselian to early Sakmarian age in the Southern Urals.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6615 ◽  
Author(s):  
Robert R. Reisz

The fossil record of caseids, a clade of faunivorous to large herbivorous Permian synapsids, is unusual in having a poorly documented history. Although Kungurian caseids are common in the well-known continental deposits of North America, and the fossil record of the group extends into the middle Permian (Guadalupian), with the presence of the large caseid Ennatosaurus in the Mezen Basin faunal assemblage, only two other occurrences are known in older Permian age sediments. One is an undescribed caseid from the Bromacker Quarry in Germany, and the second is Oromycter from the lower Permian of Richards Spur, Oklahoma. The former is known from several articulated skeletons, but the latter is known only from a handful of skeletal elements, including elements of the snout and lower jaw, some phalanges, and a few vertebrae. Here the fragmentary tooth bearing elements and dorsal vertebrae of another small caseid from Richards Spur are described, with a discussion of its significance in the context of caseid evolution, and the continuously expanding faunal list and taxic diversity at this locality.


2021 ◽  
pp. 1-13
Author(s):  
Rainer R. Schoch ◽  
Gabriela Sobral

Abstract The late Paleozoic temnospondyl Sclerocephalus formed an aquatic top predator in various central European lakes of the late Carboniferous and early Permian. Despite hundreds of specimens spanning a wide range of sizes, knowledge of the endocranium (braincase and palatoquadrate) remained very insufficient in Sclerocephalus and other stereospondylomorphs because even large skulls had unossified endocrania. A new specimen from a stratigraphically ancient deposit at St. Wendel in southwestern Germany is recognized as representing a new taxon, S. concordiae new species, and reveals a completely ossified endocranium. The sphenethmoid was completely ossified from the basisphenoid to the anterior ethmoid region, co-ossified with the parasphenoid, and the basipterygoid joint was fully established. The pterygoid bears a slender, S-shaped epipterygoid, which formed a robust pillar lateral to the braincase. The massive stapes was firmly sutured to the parasphenoid. In the temnospondyl endocranium, character evolution involved various changes in the epipterygoid region, which evolved distinct morphologies in each of the major clades. UUID: http://zoobank.org/5e6d2078-eacf-4467-84cf-a12efcae7c0b


2011 ◽  
Vol 83 (2) ◽  
pp. 471-481 ◽  
Author(s):  
André Jasper ◽  
Dieter Uhl ◽  
Margot Guerra-Sommer ◽  
Abdalla M. B Abu Hamad ◽  
Neli T. G Machado

Fossil charcoal has been discovered in the Faxinal Coalfield, Early Permian, Rio Bonito Formation, in the southernmost portion of the Paraná Basin, Brazil. Three types of pycnoxylic gymnosperm woods recovered from a single tonstein layer are described and confirm the occurrence of paleowildfire in this area. A decrease of the charcoal concentration from the base to the top within the tonstein layer indicates that the amount of fuel declined during the deposition probably due to the consumption of vegetation by the fire. The presence of inertinite in coals overlying and underlying the tonstein layer indicates that fire-events were not restricted to the ash fall interval. The integration of the new data presented in the current study with previously published data for the Faxinal Coalfield demonstrates that volcanic events that occurred in the surrounding areas can be identified as one potential source of ignition for the wildfires. The presence of charcoal in Permian sediments associated with coal levels at different localities demonstrates that wildfires have been relatively common events in the peat-forming environments in which the coal formation took place in the Paraná Basin.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246620
Author(s):  
Alexander Averianov ◽  
Hans-Dieter Sues

Dzharatitanis kingi gen. et sp. nov. is based on an isolated anterior caudal vertebra (USNM 538127) from the Upper Cretaceous (Turonian) Bissekty Formation at Dzharakuduk, Uzbekistan. Phylogenetic analysis places the new taxon within the diplodocoid clade Rebbachisauridae. This is the first rebbachisaurid reported from Asia and one of the youngest rebbachisaurids in the known fossil record. The caudal is characterized by a slightly opisthocoelous centrum, ‘wing-like’ transverse processes with large but shallow PRCDF and POCDF, and the absence of a hyposphenal ridge and of TPRL and TPOL. The neural spine has high SPRL, SPDL, SPOL, and POSL and is pneumatized. The apex of neural spine is transversely expanded and bears triangular lateral processes. The new taxon shares with Demandasaurus and the Wessex rebbachisaurid a high SPDL on the lateral side of the neural spine, separated from SPRL and SPOL. This possibly suggests derivation of Dzharatitanis from European rebbachisaurids. This is the second sauropod group identified in the assemblage of non-avian dinosaurs from the Bissekty Formation, in addition to a previously identified indeterminate titanosaurian.


2015 ◽  
Vol 152 (6) ◽  
pp. 1123-1136 ◽  
Author(s):  
ELADIO LIÑÁN ◽  
JOSÉ ANTONIO GÁMEZ VINTANED ◽  
RODOLFO GOZALO

AbstractThe type material ofAgraulos antiquusSdzuy, 1961 from the La Herrería Formation, northern Spain, is revised together with additional material and included in the new genusLunagraulos. The stratigraphical range ofLunagraulos antiquus(Sdzuy, 1961) – occurring below that of the trilobite species of the generaLunolenus,MetadoxidesandDolerolenusin the type locality of Los Barrios de Luna in the province of León, northern Spain – and the accompanying ichnofossil assemblage demonstrate an Ovetian age (lower part of Cambrian Stage 3, currently being discussed by the International Subcommission on Cambrian Stratigraphy) for this species. Moreover, the trilobiteLunagraulos tamamensisn. gen. n. sp. is found in the Tamames Sandstone near the village of La Rinconada in the province of Salamanca, central Spain. The biostratigraphical position of this new taxon and its accompanying ichnoassemblage is also analysed and assigned to the lowermost Ovetian Stage. The genusLunagraulosis therefore the oldest agraulid found in the fossil record. The exceptional presence ofLunagraulosin a marine coarse siliciclastic succession – a facies rather typical for the ichnofossilsCruzianaandRusophycus, some of the oldest signs of trilobite activity – suggests that first trilobite representatives may have inhabited high- to middle-energy, marine environments. This hypothesis may also explain both the taxonomic and biostratigraphic heterogeneity of the first trilobite genera appearing across the world, due to preservation problems in this type of facies. Comparison of theLunagraulos biostratigraphy with other coeval Spanish fossil assemblages allows us to propose its intercontinental correlation with the oldest records of currently known trilobites.


2019 ◽  
Vol 187 (3) ◽  
pp. 782-799 ◽  
Author(s):  
Andrej Čerňanský

Abstract Dibamid reptiles have a known current distribution on two continents (Asia and North America). Although this clade represents an early-diverging group in the Squamata and thus should have a long evolutionary history, no fossil record of these peculiar burrowing squamate reptiles has been documented so far. The fossil material described here comes from the early Oligocene of the Valley of Lakes in Central Mongolia. This material consists of jaws and is placed in the clade Dibamidae on the basis of its morphology, which is further confirmed by phylogenetic analyses. In spite of the fragmentary nature of this material, it thus forms the first, but putative, fossil evidence of this clade. If correctly interpreted, this material demonstrates the occurrence of Dibamidae in East Asia in the Palaeogene, indicating its distribution in higher latitudes than today. The preserved elements possess a unique combination of character states, and a new taxon name is therefore erected: Hoeckosaurus mongoliensis sp. nov. The dentary of Hoeckosaurus exhibits some characters of the two extant dibamid taxa. However, the open Meckel’s groove, together with other characters, show that this group was morphologically much more diverse in the past.


1989 ◽  
Vol 63 (2) ◽  
pp. 158-181 ◽  
Author(s):  
Calvin H. Stevens ◽  
Barbara Rycerski

Twenty-two species of Early Permian colonial rugose corals belonging to 12 genera from 10 locations in the Stikine River area in northwestern British Columbia, Canada, are described. These include three new species ofFomichevella(F. magna, F. southeri, F. bamberi); two species ofHeintzella; five species ofHeritschioides, of which three are new (H. bagleyae, H. garvinae, H. hoganae); two new species ofParaheritschioides(P. jennyi, P. wickenae); one new species questionably assigned toKleopatrina(K.?stikinensis); two new species ofPetalaxis(P. guaspariniae, P. neriae); and two new species ofLytvophyllum(L.?mongeri, L. wersoni). In addition, five new species assigned to five new genera are here namedEastonastraea complexa, Fedorowskiella simplex, Pararachnastraea lewisi, Stikineastraea thomasi, andWilsonastraea rigbyi.These corals occur in rocks forming part of the Stikine terrane, the largest tectonostratigraphic unit in western Canada. This coral fauna shows a very close affinity with that of the Lower Permian McCloud Limestone of the eastern Klamath Mountains of northern California, and there is some similarity to the Coyote Butte fauna of central Oregon. Several species compare most closely with species from Spitsbergen, but there are few similarities with any cratonal North American faunas and none with Tethyan faunas.


2020 ◽  
Vol 8 ◽  
Author(s):  
Grace Musser ◽  
Julia A. Clarke

The stem lineage relationships and early phenotypic evolution of Charadriiformes (shorebirds) and Gruiformes (rails, cranes, and allies) remain unresolved. It is still debated whether these clades are sister-taxa. New phylogenetic analyses incorporating Paleogene fossils have the potential to reveal the evolutionary connections of these two speciose and evolutionarily critical neoavian subclades. Although Gruiformes have a rich Paleogene fossil record, most of these fossils have not been robustly placed. The Paleogene fossil record of Charadriiformes is scarce and largely consists of fragmentary single elements. Only one proposed Eocene charadriiform-like taxon, Scandiavis mikkelseni of Denmark, is represented by a partial skeleton. Here, we describe a new species from the early Eocene Green River Formation of North America comprising a partial skeleton and feather remains. Because the skeleton lacks the pectoral girdle and forelimbs as in S. mikkelseni, only features of the skull, axial skeleton, and hind limb are available to resolve the phylogenetic placement of this taxon. These anatomical subregions initially showed features seen in Charadriiformes and Gruiformes. To assess placement of this taxon, we use a matrix consisting of 693 morphological characters and 60 taxa, including S. mikkelseni and the oldest known charadriiform taxa represented by single elements. These more fragmentary records comprise two distal humeri from the earliest Eocene Naranbulag Formation of Mongolia and the early Eocene Nanjemoy Formation of Virginia. Our phylogenetic analyses recover the new taxon and S. mikkelseni alternatively as a charadriiform or as a stem-gruiform; placement is contingent upon enforced relationships for major neoavian subclades recovered by recent molecular-based phylogenies. Specifically, when constraint trees based on results that do not recover Charadriiformes and Gruiformes as sister-taxa are used, the new taxon and S. mikkelseni are recovered within stem Gruiformes. Both Paleogene fossil humeri are consistently recovered within crown Charadriiformes. If placement of these humeri or the new taxon as charadriiforms are correct, this may indicate that recent divergence time analyses have underestimated the crown age of another major crown avian subclade; however, more complete sampling of these taxa is necessary, especially of more complete specimens with pectoral elements.


Sign in / Sign up

Export Citation Format

Share Document