New low-cost broadband CPW-fed planar antenna

2014 ◽  
Vol 8 (2) ◽  
pp. 271-276 ◽  
Author(s):  
Rachid Dakir ◽  
Jamal Zbitou ◽  
Ahmed Mouhsen ◽  
Abdelwahed Tribak ◽  
Amediavilla Sanchez ◽  
...  

The narrow bandwidth of microstrip antennas is one of the most important features that restrict its wide usage. This paper presents a new coplanar waveguide-fed compact rectangular microstrip antenna with the improvement of the bandwidth using the slot geometry and cutting rectangular periodic edges for the patch radiator. To develop this structure, we have conducted many optimization and investigation using Momentum Software integrated into ADS “Advanced Design System” and comparison of the results with CST Microwave Studio. The comparison between the simulation and measurement results permits to validate the final achieved antenna with an improvement of the bandwidth. This antenna has wide matching input impedance ranging from 1.7 to 3.5 GHz with a return loss less than −10 dB, corresponding to bandwidth 69.7% at 2.6 GHz as a frequency center. The antenna achieved is a low cost, planar, and easy to be fabricated, thus promising for multiple applications in wireless communication systems. Details of the proposed antenna design and both simulated and experimental results are described and discussed.

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1439
Author(s):  
Janghyuk Youn ◽  
Woong Son ◽  
Bang Chul Jung

Recently, reconfigurable intelligent surfaces (RISs) have received much interest from both academia and industry due to their flexibility and cost-effectiveness in adjusting the phase and amplitude of wireless signals with low-cost passive reflecting elements. In particular, many RIS-aided techniques have been proposed to improve both data rate and energy efficiency for 6G wireless communication systems. In this paper, we propose a novel RIS-based channel randomization (RCR) technique for improving physical-layer security (PLS) for a time-division duplex (TDD) downlink cellular wire-tap network which consists of a single base station (BS) with multiple antennas, multiple legitimate pieces of user equipment (UE), multiple eavesdroppers (EVEs), and multiple RISs. We assume that only a line-of-sight (LOS) channel exists among the BS, the RISs, and the UE due to propagation characteristics of tera-hertz (THz) spectrum bands that may be used in 6G wireless communication systems. In the proposed technique, each RIS first pseudo-randomly generates multiple reflection matrices and utilizes them for both pilot signal duration (PSD) in uplink and data transmission duration (DTD) in downlink. Then, the BS estimates wireless channels of UE with reflection matrices of all RISs and selects the UE that has the best secrecy rate for each reflection matrix generated. It is shown herein that the proposed technique outperforms the conventional techniques in terms of achievable secrecy rates.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Basem Aqlan ◽  
Mohamed Himdi ◽  
Hamsakutty Vettikalladi ◽  
Laurent Le-Coq

AbstractA low-cost, compact, and high gain Fabry–Perot cavity (FPC) antenna which operates at 300 GHz is presented. The antenna is fabricated using laser-cutting brass technology. The proposed antenna consists of seven metallic layers; a ground layer, an integrated stepped horn element (three-layers), a coupling layer, a cavity layer, and an aperture-frequency selective surface (FSS) layer. The proposed aperture-FSS function acts as a partially reflective surface, contributing to a directive beam radiation. For verification, the proposed sub-terahertz (THz) FPC antenna prototype was developed, fabricated, and measured. The proposed antenna has a measured reflection coefficient below − 10 dB from 282 to 304 GHz with a bandwidth of 22 GHz. The maximum measured gain observed is 17.7 dBi at 289 GHz, and the gain is higher than 14.4 dBi from 285 to 310 GHz. The measured radiation pattern shows a highly directive pattern with a cross-polarization level below − 25 dB over the whole band in all cut planes, which confirms with the simulation results. The proposed antenna has a compact size, low fabrication cost, high gain, and wide operating bandwidth. The total height of the antenna is 1.24 $${\lambda }_{0}$$ λ 0 ($${\lambda }_{0}$$ λ 0 at the design frequency, 300 GHz) , with a size of 2.6 mm × 2.6 mm. The proposed sub-THz waveguide-fed FPC antenna is suitable for 6G wireless communication systems.


Author(s):  
Yue Cui ◽  
Kai-Da Xu ◽  
Ying-Jiang Guo ◽  
Qiang Chen

Abstract A half-mode substrate integrated waveguide (HMSIW) combined with spoof surface plasmon polariton (SSPP) structure is proposed to realize bandpass filter (BPF) characteristic and miniaturization, which is termed as the half-mode substrate integrated plasmonic waveguide (HMSIPW). Compared with the conventional HMSIW structure having identical cutoff frequency, this new design of HMSIPW not only supports SSPP modes, but also realizes a transversal size reduction of 19.4% and longitudinal reduction of more than 60%. Then, a diplexer based on two back-to-back placed HMSIPW BPFs is designed, and it has only one row of metallized via holes to further reduce the transversal size. The experimental prototypes of the filters and diplexer have been manufactured, and the measurement results agree well with simulation ones. Due to the size miniaturization and simple structure, the proposed designs will have many potentials in the integrated devices and circuits for wireless communication systems.


Author(s):  
Mohamad Kamal A Rahim ◽  
Huda A. A. Majid ◽  
Mohamad Rijal Hamid

Reconfigurable antennas have attracted a lot of attention especially in future wireless communication systems. Superior features such as reconfigurable capability, low cost, multi-purpose functions and size miniaturization have given reconfigurable antennas advantage to be integrated into a wireless systems. In this chapter, two types of reconfigurable antennas are discussed. First, frequency reconfigurable narrowband microstrip slot antenna (FRSA) is presented. The proposed antenna is designed to operate at six reconfigurable frequency bands from 2 GHz to 5 GHz with bidirectional radiation pattern. The second antenna design is frequency reconfigurable narrowband patch-slot antenna (FRPSA) is presented. The antenna is a combination of a microstrip patch and slot antenna. Nine different narrow bands are produced by tuning the effective length of the slot. The performances of the antenna in term of simulated and measured results are presented. In conclusion, good agreement between the simulated and measured results has been attained.


Author(s):  
Fouad Aytouna ◽  
Jamal Zbitou ◽  
Mohamed Aghoutane ◽  
Naima Amar Touhami ◽  
Abdelwahed Tribak ◽  
...  

In this work, we propose a novel design of a planar CPW lowpass “LPF” filter based on the use of periodic structures. The periodic cells are formed from a rectangular slot repeated periodically. The originality of this work is to develop a new LPF structure which is simple, low cost for fabrication and easy to associate with others microwave planar circuits. The proposed and validated LPF is a compact planar filter structure. The final circuit is simulated and optimized by using two electromagnetic solvers, ADS (Advanced Design System) and HFSS (High Frequency Structural Simulator). After many series of optimization we have validated the final circuit into simulation by using optimization methods integrated into the both solvers, taking into account a high density of meshing in order to cover the whole circuit. The fabricated LPF circuit shows good agreement between simulation and measurement results in term of matching input impedance and insertion loss with a cutoff frequency of 1.25GHz. The entire area of the proposed LPF is 35x31 mm<sup>2</sup>.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Alexander Bondarik ◽  
Daniel Sjöberg

A beam shift method is presented for an aperture coupled stacked microstrip antenna with a gridded parasitic patch. The gridded parasitic patch is formed by nine close coupled identical rectangular microstrip patches. Each of these patches is resonant at the antenna central frequency. Using four switches connecting adjacent parasitic patches in the grid, it is possible to realize a pattern reconfigurable antenna with nine different beam directions in broadside, H-plane, E-plane, and diagonal planes. The switches are modeled by metal strips and different locations for strips are studied. As a result an increase in the antenna coverage is achieved. Measurement results for fabricated prototypes correspond very well to simulation results. The antenna is designed for 60 GHz central frequency and can be used in high speed wireless communication systems.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Weiping Li ◽  
Zongxi Tang ◽  
Xin Cao

In this article, a compact narrow-bandpass filter with high selectivity and improved rejection level is presented. For miniaturization, a pair of double negative (DNG) cells consisting of quasi-planar chiral resonators are cascaded and electrically loaded to a microstrip transmission line; short ended stubs are introduced to expand upper rejection band. The structure is analyzed using equivalent circuit models and simulated based on EM simulation software. For validation, the proposed filter is fabricated and measured. The measured results are in good agreement with the simulated ones. By comparing to other filters in the references, it is shown that the proposed filter has the advantage of skirt selectivity and compact size, so it can be integrated more conveniently in modern wireless communication systems and microwave planar circuits.


Sign in / Sign up

Export Citation Format

Share Document