Biometric, nutritional, biochemical, and cardiovascular outcomes in male rats submitted to an experimental model of early weaning that mimics mother abandoning

Author(s):  
Rogério Barbosa de Magalhães Barros ◽  
Thaís Alvim-Silva ◽  
Júlia Raquel Nunes de Souza ◽  
Emiliana Barbosa Marques ◽  
Nazareth N. Rocha ◽  
...  

Abstract Literature describes breast milk as the best food for the newborn, recommending exclusive breastfeeding for up to 6 months of age. However, it is not available for more than 40% of children worldwide. Pharmacological and non-pharmacological models of 3-day early weaning were developed in rodents to investigate later outcomes related solely to this nutritional insult. Thus, the present work aimed to describe biometric, nutritional, biochemical, and cardiovascular outcomes in adult male rats submitted to 3-day early weaning achieved by maternal deprivation. This experimental model comprises not only nutritional insult but also emotional stress, simulating mother abandoning. Male offspring were physically separated from their mothers at 21st (control) or 18th (early weaning) postnatal day, receiving water/food ad libitum. Analysis performed at postnatal days 30, 90, 150, and 365 encompassed body mass and food intake monitoring and serum biochemistry determination. Further assessments included hemodynamic, echocardiographic, and cardiorespiratory evaluation. Early-weaned males presented higher body weight when compared to control as well as dyslipidemia, higher blood pressure, diastolic dysfunction, and cardiac hypertrophy in adult life. Animals early deprived of their mothers have also presented a worse performance on the maximal effort ergometer test. This work shows that 3-day early maternal deprivation favors the development of cardiovascular disease in male rats.

2008 ◽  
Vol 294 (2) ◽  
pp. R528-R538 ◽  
Author(s):  
Kartik Shankar ◽  
Amanda Harrell ◽  
Xiaoli Liu ◽  
Janet M. Gilchrist ◽  
Martin J. J. Ronis ◽  
...  

Risk of obesity in adult life is subject to programming during gestation. To examine whether in utero exposure to maternal obesity increases the risk of obesity in offspring, we developed an overfeeding-based model of maternal obesity in rats utilizing intragastric feeding of diets via total enteral nutrition. Feeding liquid diets to adult female rats at 220 kcal/kg3/4 per day (15% excess calories/day) compared with 187 kcal/kg3/4 per day for 3 wk caused substantial increase in body weight gain, adiposity, serum insulin, leptin, and insulin resistance. Lean or obese female rats were mated with ad libitum AIN-93G-fed male rats. Exposure to obesity was ensured to be limited only to the maternal in utero environment by cross-fostering pups to lean dams having ad libitum access to AIN-93G diets throughout lactation. Numbers of pups, birth weight, and size were not affected by maternal obesity. Male offspring from each group were weaned at postnatal day (PND)21 to either AIN-93G diets or high-fat diets (45% fat calories). Body weights of offspring from obese dams did not differ from offspring of lean dams when fed AIN-93G diets through PND130. However, offspring from obese dams gained remarkably greater ( P < 0.005) body weight and higher %body fat when fed a high-fat diet. Body composition was assessed by NMR, X-ray computerized tomography, and weights of adipose tissues. Adipose histomorphometry, insulin sensitivity, and food intake were also assessed in the offspring. Our data suggest that maternal obesity at conception leads to fetal programming of offspring, which could result in obesity in later life.


2021 ◽  
pp. 107479
Author(s):  
Xiaofan Xiong ◽  
Lin Han ◽  
Meiyang Fan ◽  
Lingyu Zhang ◽  
Liying Liu ◽  
...  

2018 ◽  
Vol 315 (1) ◽  
pp. E29-E37 ◽  
Author(s):  
Mariana Peduti Halah ◽  
Paula Beatriz Marangon ◽  
Jose Antunes-Rodrigues ◽  
Lucila L. K. Elias

Neonatal nutritional changes induce long-lasting effects on energy homeostasis. Adiponectin influences food intake and body weight. The aim of this study was to investigate the effects of neonatal nutritional programming on the central stimulation of adiponectin. Male Wistar rats were divided on postnatal (PN) day 3 in litters of 3 (small litter, SL), 10 (normal litter, NL), or 16 pups/dam (large litter, LL). We assessed body weight gain for 60 days, adiponectin concentration, and white adipose tissue weight. We examined the response of SL, NL, and LL rats on body weight gain, food intake, oxygen consumption (V̇o2), respiratory exchange ratio (RER), calorimetry, locomotor activity, phosphorylated-AMP-activated protein kinase (AMPK) expression in the hypothalamus, and uncoupling protein (UCP)-1 in the brown adipose tissue after central stimulus with adiponectin. After weaning, SL rats maintained higher body weight gain despite similar food intake compared with NL rats. LL rats showed lower body weight at weaning, with a catch up afterward and higher food intake. Both LL and SL groups had decreased plasma concentrations of adiponectin at PN60. SL rats had increased white adipose tissue. Central injection of adiponectin decreased body weight and food intake and increased V̇o2, RER, calorimetry, p-AMPK and UCP- 1 expression in NL rats, but it had no effect on SL and LL rats, compared with the respective vehicle groups. In conclusion, neonatal under- and overfeeding induced an increase in body weight gain in juvenile and early adult life. Unresponsiveness to central effects of adiponectin contributes to the imbalance of the energy homeostasis in adult life induced by neonatal nutritional programming.


2006 ◽  
Vol 163 (4) ◽  
pp. 704-709 ◽  
Author(s):  
Holger J. Sørensen ◽  
Erik L. Mortensen ◽  
June M. Reinisch ◽  
Sarnoff A. Mednick
Keyword(s):  

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Archana Vyas ◽  
Heera Ram ◽  
Ashok Purohit ◽  
Rameshwar Jatwa

Aspirin (acetylsalicylic acid) is widely used for cardiovascular prophylaxis and as anti-inflammatory pharmaceutical. An investigation was carried out to evaluate the influence of subchronic dose of aspirin on reproductive profile of male rats, if any. Experimental animals were divided into three groups: control and aspirin subchronic dose of 12.5 mg/kg for 30 days and 60 days, respectively, while alterations in sperm dynamics, testicular histopathological and planimetric investigations, body and organs weights, lipid profiles, and hematology were performed as per aimed objectives. Subchronic dose of aspirin reduced sperm density, count, and mobility in cauda epididymis and testis; histopathology and developing primary spermatogonial cells (primary spermatogonia, secondary spermatogonia, and mature spermatocyte) count were also significantly decreased in rats. Hematological investigations revealed hemopoietic abnormalities in 60-day-treated animals along with dysfunctions in hepatic and renal functions. The findings of the present study revealed that administration with subchronic dose of aspirin to male rats resulted in altered reproductive profiles and serum biochemistry.


1970 ◽  
Vol 36 (1) ◽  
pp. 103-109 ◽  
Author(s):  
S Talukder ◽  
MA Hossain ◽  
S Sarker ◽  
MAH Khan

To evaluate the antifertility effect of crude mixture of A. precatorius seeds at the dose level of 50 mg/kg body weight in adult male rats, after oral administration to male rats for 40 days, the rats were sacrificed and hormonal profiles, serum biochemistry, sperm count and histological changes were recorded. A sharp decrease in the serum levels of testosterone (0.70 ± 0.17 ng/ml), FSH (0.70 ± 0.22 lU/L), and LH (0.87 ± 0.35 IU/L) was detected compared to control (FSH, LH and testosterone levels 0.93 ± 0.15 ng/ml, 0.76 ± 0.28 IU/L, 1.44 ± .011 IU/L, respectively). A significant reduction of epididymal sperm count (2.34 million/mL) was noted in treated rats as compared to control group (7.87 million/mL). Histology of testes showed marked atrophy of the testes, which was characterized by disruption of the seminiferous epithelium and atrophy of the Leydig cells. Crude mixture of A. precatorius seed has a negative impact on male reproductive functions. It might be suggested that crude mixture of A. precatorius seeds might have antifertility property for male rats.   Keywords: Abrus precatorius; antifertility; male rat; testosterone. DOI: http://dx.doi.org/10.3329/bjar.v36i1.9234 BJAR 2011; 36(1): 103-109


1959 ◽  
Vol 196 (5) ◽  
pp. 965-968 ◽  
Author(s):  
Clarence Cohn ◽  
Dorothy Joseph

Normal young adult male rats were either force-fed or allowed to eat ad libitum a moderate carbohydrate diet for 3–4 weeks. The force-fed animals were given either the amount of diet consumed by the animals eating ad libitum (pair-fed) or 80% of this amount (underfed). After a 2-week period of observation, we found that the rats eating ad libitum gained 65 gm of body weight, the pair-fed, force-fed 62 gm and the underfed, force-fed 40 gm. On the basis of the water, fat and protein content of the skin, viscera and carcass of control animals killed at the beginning of the feeding regimen and of similar constituents of the experimental animals after 2 weeks of feeding, the composition of the newly formed tissues of the various groups of animals consisted of the following: a) the rat with free access to food—water = 67.8%, fat = 7.8% and protein = 22.4%; b) the pair-fed, force-fed animal—water = 55.5%, fat = 23.6% and protein = 17.7%; c) the underfed, force-fed animal—water = 64.4%, fat = 7.9% and protein = 20.0%. The ratio of calories retained in newly formed tissue to the calories ingested over the 2-week period was 11.9% for the animals eating ad libitum, 20.6% for the pair-fed, force-fed animals and 9.5% for the underfed, force-fed rats. Force feeding appears to change intermediary metabolic pathways in the direction of increased ‘efficiency’ with resultant greater fat deposition.


1988 ◽  
Vol 255 (4) ◽  
pp. R616-R621 ◽  
Author(s):  
J. O. Hill ◽  
J. C. Anderson ◽  
D. Lin ◽  
F. Yakubu

The effects of differences in meal frequency on body weight, body composition, and energy expenditure were studied in mildly food-restricted male rats. Two groups were fed approximately 80% of usual food intake (as periodically determined in a group of ad libitum fed controls) for 131 days. One group received all of its food in 2 meals/day and the other received all of its food in 10-12 meals/day. The two groups did not differ in food intake, body weight, body composition, food efficiency (carcass energy gain per amount of food eaten), or energy expenditure at any time during the study. Both food-restricted groups had a lower food intake, body weight gain, and energy expenditure than a group of ad libitum-fed controls. In conclusion, these results suggest that amount of food eaten, but not the pattern with which it is ingested, has a major influence on energy balance during mild food restriction.


Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1993 ◽  
Author(s):  
Guilherme Rizzoto ◽  
Deepa Sekhar ◽  
Jacob C. Thundathil ◽  
Prasanth K. Chelikani ◽  
John P. Kastelic

The objective was to determine effects of feed restriction and refeeding on reproductive development and energy balance in pre-pubertal male rats. Sprague Dawley rats (n = 32, 24 days old, ~65 g), were randomly allocated into four treatments (n = 8/treatment): (1) Control (CON, ad libitum feed; (2) Mild Restriction (MR, rats fed 75% of CON consumption); (3) Profound Restriction (PR, 50% of CON consumption); or (4) Refeeding (RF, 50% restriction for 14 days, and then ad libitum for 7 days). Feed restriction delayed reproductive development and decreased energy balance and tissue accretion, with degree of reproductive and metabolic dysfunctions related to restriction severity. In RF rats, refeeding largely restored testis weight, sperm production (per gram and total), plasma IGF-1, leptin and insulin concentrations and energy expenditure, although body composition did not completely recover. On Day 50, more CON and RF rats than PR rats were pubertal (5/6, 4/5 and 1/6, respectively; plasma testosterone >1 ng/mL) with the MR group (4/6) not different. Our hypothesis was supported: nutrient restriction of pre-pubertal rats delayed reproductive development, induced negative energy balance and decreased metabolic hormone concentrations (commensurate with restriction), whereas short-term refeeding after profound restriction largely restored reproductive end points and plasma hormone concentrations, but not body composition.


Sign in / Sign up

Export Citation Format

Share Document