Potential Benefit and Risk of Fluridone as a Fall Germination Stimulant in Western Canada

2017 ◽  
Vol 31 (5) ◽  
pp. 773-780
Author(s):  
Breanne D. Tidemann ◽  
Linda M. Hall ◽  
K. Neil Harker ◽  
Hugh J. Beckie

Herbicide resistance has increased the need for novel weed control strategies. Fluridone has herbicidal as well as potential germination stimulant activity. The objectives of this study were to evaluate fluridone as a fall-applied germination stimulant for weed control and to assess rotational crop tolerance. Fall-applied fluridone was compared with a nontreated control in areas established with false cleavers, volunteer canola, and wild oat at Lacombe, AB, in 2014–2015 and 2015–2016, and at St Albert, AB, in 2015–2016. In the fall, there was a trend for weed densities to be higher in fluridone treatments than in untreated controls across site-years. The stimulatory effect of fluridone on weed germination was not statistically significant in fall assessments, while the weed control effect was significant in 33% of spring assessments. While fluridone reduced weed biomass for some site-years, it also reduced canola crop emergence and biomass at St Albert in 2015–2016, and caused injury symptoms on wheat and field pea. Risk of carryover to subsequent crops outweighed the benefits of using fluridone in the fall to stimulate weed germination in this study.

1964 ◽  
Vol 44 (4) ◽  
pp. 351-358 ◽  
Author(s):  
E. S. Molberg ◽  
H. A. Friesen ◽  
E. V. McCurdy ◽  
R. D. Dryden

Two years of field trials at a number of sites in Western Canada showed that selective control of wild oats in wheat with di-allate or tri-allate was feasible if the seed was planted 3 in. deep and the chemicals incorporated shallowly after seeding. The most reliable and practical means of achieving this placement of the chemical was by harrowing immediately after application. Harrowing twice resulted in slightly better wild oat control than harrowing once, but this did not increase crop yields. At one site, in 1962, under conditions of excessive moisture and late seeding, there was severe injury to wheat. However, even here the injury was less with the post-seeding than with the pre-seeding method. There was some evidence that wheat was more tolerant to tri-allate than di-allate. Pre-seeding incorporation with the disk gave slightly better weed control than post-seeding incorporation with a double harrow, but again differences were not great enough to affect yield.


1999 ◽  
Vol 59 (3) ◽  
pp. 283-299 ◽  
Author(s):  
A.J de Buck ◽  
H.B Schoorlemmer ◽  
G.A.A Wossink ◽  
S.R.M Janssens

2012 ◽  
Vol 27 (1) ◽  
pp. 60-67 ◽  
Author(s):  
Steven J. Shirtliffe ◽  
Eric N. Johnson

AbstractOrganic farmers in western Canada rely on tillage to control weeds and incorporate crop residues that could plug mechanical weed-control implements. However, tillage significantly increases the risk of soil erosion. For farmers seeking to reduce or eliminate tillage, potential alternatives include mowing or using a roller crimper for terminating green manure crops (cover crops) or using a minimum tillage (min-till) rotary hoe for mechanically controlling weeds. Although many researchers have studied organic crop production in western Canada, few have studied no-till organic production practices. Two studies were recently conducted in Saskatchewan to determine the efficacy of the following alternatives to tillage: mowing and roller crimping for weed control, and min-till rotary hoeing weed control in field pea (Pisum sativum L.). The first study compared mowing and roller crimping with tillage when terminating faba bean (Vicia faba L.) and field pea green manure crops. Early termination of annual green manure crops with roller crimping or mowing resulted in less weed regrowth compared with tillage. When compared with faba bean, field pea produced greater crop biomass, suppressed weeds better and had less regrowth. Wheat yields following pea were not affected by the method of termination. Thus, this first study indicated that roller crimping and mowing are viable alternatives to tillage to terminate field pea green manure crops. The second study evaluated the tolerance and efficacy of a min-till rotary harrow in no-till field pea production. The min-till rotary hoe was able to operate in no-till cereal residues and multiple passes did not affect the level of residue cover. Field pea exhibited excellent tolerance to the min-till rotary hoe. Good weed control occurred with multiple rotary hoe passes, and pea seed yield was 87% of the yield obtained in the herbicide-treated check. Therefore, this second study demonstrated that min-till rotary hoeing effectively controls many small seeded annual weeds in the presence of crop residue and thus can reduce the need for tillage in organic-cropping systems.


2006 ◽  
Vol 86 (3) ◽  
pp. 875-885 ◽  
Author(s):  
J. R. Moyer ◽  
S. N. Acharya

Weeds, especially dandelion (Taraxacum officinale Weber in F.H. Wigg.), tend to infest a forage alfalfa (Medicago sativa L.) stand 2 to 4 yr after establishment. To develop better weed management systems, experiments were conducted at Lethbridge, Alberta, from 1995 to 2002 and Creston, British Columbia, from 1998 to 2001, which included the alfalfa cultivars Beaver (standard type) and AC Blue J (Flemish type) and annual applications of metribuzin and hexazinone. These herbicides are registered for weed control in irrigated alfalfa in Alberta and alfalfa grown for seed. In addition, two sulfonylurea herbicides, metsulfuron and sulfosulfuron, and glyphosate were included. All of the herbicides except glyphosate controlled or suppressed dandelion and mustard family weeds. Metsulfuron at 5 g a.i. ha-1 almost completely controlled dandelion at both locations. However, after metsulfuron application at Lethbridge, dandelion was replaced with an infestation of downy brome, which is unpalatable for cattle. None of the herbicides increased total forage (alfalfa + weed) yield, and in some instances herbicides reduced forage quality by causing a shift from a palatable to an unpalatable weed species. However, it was observed that AC Blue J consistently yielded more than Beaver, and weed biomass was consistently less in the higher-yielding cultivar. AC Blue J was developed primarily for the irrigated area in southern Alberta and for southern British Columbia. Therefore, additional experiments should be conducted to determine which alfalfa cultivars have the greatest ability to compete with weeds in other regions of western Canada. Key words: Alfalfa yield, dandelion, forage quality, weed control


Author(s):  
Godfrey Nakitare Nambafu ◽  
Richard Ndemo Onwonga

Over the years, new technologies have been tested and introduced to control Striga in maize producing areas but adoption has remained low. The study done in 2013, determined the demographic and socioeconomic factors that influenced the adoption of Striga control technologies in Kisumu West, Bumula and Teso South sub counties of Western Kenya. Through Multi stage sampling technique, 40 households were selected per sub county for questionnaire administration; to gather information on demographic profiles of the sample population, type of fertilizer and seed variety used, income of the household, source of credit facilities and challenges faced in weed control. Chi square test at P<0.05 and logistic regression analysis, using R software was used to determine the relationship between demographic and socioeconomic factors and uptake of Striga control technologies. Farmers cited high cost, poor availability of improved varieties and lack of adequate knowledge as reasons for non-adoption of the Striga control strategies. Farmer’s age, education, land size and hiring of labour were found to significantly influence the adoption of the Striga control technologies. The low levels of adoption of modern technology indicate that they were not meeting farmers’ expectations, thus, researchers should put into consideration farmers’ education, age, land size and ability to high labour in their planning for an informed technology adoption. In addition, alternative options should be extended to farmers who are not able to use expensive technologies.


1992 ◽  
Vol 117 (2) ◽  
pp. 255-259
Author(s):  
Brian A. Kahn ◽  
Raymond Joe Schatzer

The herbicides paraquat, trifluralin, and metolachlor were compared for efficacy of weed control in cowpea [Vigna unguiculata (L.) Walp.] with and without cultivation as a supplemental strategy. Herbicides also were compared against a no cultivation-no herbicide treatment (control) and against cultivation without an herbicide. Cultivation had no significant effect on seed yield, biological yield, or harvest index of cowpea. Paraquat, applied before seeding but after emergence of weeds, was ineffective for weed control and usually did not change cowpea yield from that obtained without an herbicide. Trifluralin and metolachlor more than tripled cowpea seed yield compared with that obtained without an herbicide in 1988, when potential weed pressure was 886 g·m-2 (dry weight). The main effects of trifluralin and metolachlor were not significant for cowpea seed yield in 1989, when potential weed pressure was 319 g·m-2 (dry weight). However, in 1989, these two herbicides still increased cowpea seed yield compared with that of the control and increased net farm income by more than $300/ha compared with the income obtained from the control. Chemical names used 1,1'-dimethyl-4,4' -bipyridlnium salts (paraquat); 2,6-dinitro-N,N-dipropyl-4-(trifluoromethyl) benzenamine (trifluralin); 2-chloro-N-(2-ethyl-6 -methylphenyl)-N-(2-methoxy-l-methylethyl) acetamide (metolachlor).


2011 ◽  
Vol 25 (2) ◽  
pp. 183-191 ◽  
Author(s):  
Jared R. Whitaker ◽  
Alan C. York ◽  
David L. Jordan ◽  
A. Stanley Culpepper

Glyphosate-resistant (GR) Palmer amaranth has become a serious pest in parts of the Cotton Belt. Some GR cotton cultivars also contain the WideStrike™ insect resistance trait, which confers tolerance to glufosinate. Use of glufosinate-based management systems in such cultivars could be an option for managing GR Palmer amaranth. The objective of this study was to evaluate crop tolerance and weed control with glyphosate-based and glufosinate-based systems in PHY 485 WRF cotton. The North Carolina field experiment compared glyphosate and glufosinate alone and in mixtures applied twice before four- to six-leaf cotton. Additional treatments included glyphosate and glufosinate mixed withS-metolachlor or pyrithiobac applied to one- to two-leaf cotton followed by glyphosate or glufosinate alone on four- to six-leaf cotton. All treatments received a residual lay-by application. Excellent weed control was observed from all treatments on most weed species. Glyphosate was more effective than glufosinate on glyphosate-susceptible (GS) Palmer amaranth and annual grasses, while glufosinate was more effective on GR Palmer amaranth. Annual grass and GS Palmer amaranth control by glyphosate plus glufosinate was often less than control by glyphosate alone but similar to or greater than control by glufosinate alone, while mixtures were more effective than either herbicide alone on GR Palmer amaranth. Glufosinate caused minor and transient injury to the crop, but no differences in cotton yield or fiber quality were noted. This research demonstrates glufosinate can be applied early in the season to PHY 485 WRF cotton without concern for significant adverse effects on the crop. Although glufosinate is often less effective than glyphosate on GS Palmer amaranth, GR Palmer amaranth can be controlled with well-timed applications of glufosinate. Use of glufosinate in cultivars with the WideStrike trait could fill a significant void in current weed management programs for GR Palmer amaranth in cotton.


Weed Science ◽  
1993 ◽  
Vol 41 (2) ◽  
pp. 232-238 ◽  
Author(s):  
Ian M. Heap ◽  
Bruce G. Murray ◽  
Heather A. Loeppky ◽  
Ian N. Morrison

Resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides was identified in four wild oat populations from western Canada. Populations UM1, UM2, and UM3 originated from northwestern Manitoba and UM33 from south-central Saskatchewan. Field histories indicated that these populations were exposed to repeated applications of diclofop-methyl and sethoxydim over the previous 10 yr. The populations differed in their levels and patterns of cross-resistance to these and five other acetyl-CoA carboxylase inhibitors (ACCase inhibitors). UM1, UM2, and UM3 were resistant to diclofop-methyl, fenoxaprop-p-ethyl, and sethoxydim. In contrast, UM33 was resistant to the aryloxyphenoxy propionate herbicides but not to sethoxydim. The dose of sethoxydim required to reduce growth of UM1 by 50% was 150 times greater than for a susceptible population (UM5) or UM33 based on shoot dry matter reductions 21 d after treatment. This population differed from UM2 and UM3 that had R/S ratios of less than 10. In the field UM1 also exhibited a very high level of resistance to sethoxydim. In contrast to susceptible plants that were killed at the recommended dosage, shoot dry matter of resistant plants treated at eight times the recommended dosage was reduced by only 27%. In growth chamber experiments none of the four populations was cross-resistant to herbicides from five different chemical families.


1992 ◽  
Vol 6 (1) ◽  
pp. 129-135 ◽  
Author(s):  
David L. Barton ◽  
Donald C. Thill ◽  
Bahman Shafii

The effect of barley seeding rate and row spacing, and triallate, diclofop, and difenzoquat herbicide rate on barley grain yield and quality, and wild oat control were evaluated in field experiments near Bonners Ferry, Idaho, in 1989 and 1990. The purpose of the study was to develop integrated control strategies for wild oat in spring barley. Barley row spacing (9 and 18 cm) did not affect barley grain yield. Barley grain yield was greatest when barley was seeded at 134 or 201 kg ha–1compared to 67 kg ha–1. Wild oat control increased as wild oat herbicide rate increased and barley grain yield was greatest when wild oat herbicides were applied. However, barley grain yield was similar when wild oat biomass was reduced by either 65 or 85% by applications of half and full herbicide rates, respectively. Net return was greatest when the half rate of herbicide was applied to 100 wild oat plants per m2and was greatest when half or full herbicide rates were applied to 290 wild oat plants per m2. Net return increased when the seeding rate was increased to 134 or 201 kg ha–1when no herbicide was applied and when 290 wild oat plants per m2were present.


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 898 ◽  
Author(s):  
Zhongqing Wei ◽  
Xiangfeng Huang ◽  
Lijun Lu ◽  
Haidong Shangguan ◽  
Zhong Chen ◽  
...  

In view of problems such as the poor control effect of combined sewage pollution caused by traditional intercepting weir and the limited extension of the urban drainage model, which needs a large amount of basic data, this paper not only studied the characteristics of mixed-flow pollution via the urban drainage model but also simulated and optimized 6 interception control strategies and proposed a water quality interception strategy based on the pollution concentration of combined sewage. The results showed that, compared with the traditional interception weir, the interception control strategy of rainwater discharge based on the mixed pipe network model can obviously improve the control rate of various pollutants and reduce the interception amount required for pollution control. Through optimization of the interception based on water quality control by the combination of chemical oxygen demand (COD) and NH4-N, the interception rate was improved by 10.9% to 56.1% in contrast to the traditional interception weir and the closure water volume was reduced by 1432–6154 m3, which effectively improved the reliability and economy of the interception.


Sign in / Sign up

Export Citation Format

Share Document