PLACEMENT OF DI-ALLATE AND TRI-ALLATE FOR CONTROL OF WILD OATS IN WHEAT

1964 ◽  
Vol 44 (4) ◽  
pp. 351-358 ◽  
Author(s):  
E. S. Molberg ◽  
H. A. Friesen ◽  
E. V. McCurdy ◽  
R. D. Dryden

Two years of field trials at a number of sites in Western Canada showed that selective control of wild oats in wheat with di-allate or tri-allate was feasible if the seed was planted 3 in. deep and the chemicals incorporated shallowly after seeding. The most reliable and practical means of achieving this placement of the chemical was by harrowing immediately after application. Harrowing twice resulted in slightly better wild oat control than harrowing once, but this did not increase crop yields. At one site, in 1962, under conditions of excessive moisture and late seeding, there was severe injury to wheat. However, even here the injury was less with the post-seeding than with the pre-seeding method. There was some evidence that wheat was more tolerant to tri-allate than di-allate. Pre-seeding incorporation with the disk gave slightly better weed control than post-seeding incorporation with a double harrow, but again differences were not great enough to affect yield.

Weed Science ◽  
2016 ◽  
Vol 64 (3) ◽  
pp. 531-539 ◽  
Author(s):  
Zubeyde Filiz Arslan ◽  
Martin M. Williams ◽  
Roger Becker ◽  
Vincent A. Fritz ◽  
R. Ed Peachey ◽  
...  

Atrazine has been the most widely used herbicide in North American processing sweet corn for decades; however, increased restrictions in recent years have reduced or eliminated atrazine use in certain production areas. The objective of this study was to identify the best stakeholder-derived weed management alternatives to atrazine in processing sweet corn. In field trials throughout the major production areas of processing sweet corn, including three states over 4 yr, 12 atrazine-free weed management treatments were compared to three standard atrazine-containing treatments and a weed-free check. Treatments varied with respect to herbicide mode of action, herbicide application timing, and interrow cultivation. All treatments included a PRE application of dimethenamid. No single weed species occurred across all sites; however, weeds observed in two or more sites included common lambsquarters, giant ragweed, morningglory species, velvetleaf, and wild-proso millet. Standard treatments containing both atrazine and mesotrione POST provided the most efficacious weed control among treatments and resulted in crop yields comparable to the weed-free check, thus demonstrating the value of atrazine in sweet corn production systems. Timely interrow cultivation in atrazine-free treatments did not consistently improve weed control. Only two atrazine-free treatments consistently resulted in weed control and crop yield comparable to standard treatments with atrazine POST: treatments with tembotrione POST either with or without interrow cultivation. Additional atrazine-free treatments with topramezone applied POST worked well in Oregon where small-seeded weed species were prevalent. This work demonstrates that certain atrazine-free weed management systems, based on input from the sweet corn growers and processors who would adopt this technology, are comparable in performance to standard atrazine-containing weed management systems.


2014 ◽  
Vol 94 (7) ◽  
pp. 1245-1253 ◽  
Author(s):  
Breanne D. Tidemann ◽  
Linda M. Hall ◽  
Eric N. Johnson ◽  
Hugh J. Beckie ◽  
Ken L. Sapsford ◽  
...  

Tidemann, B. D., Hall, L. M., Johnson, E. N., Beckie, H. J., Sapsford, K. L., Willenborg, C. J. and Raatz, L. L. 2014. Additive efficacy of soil-applied pyroxasulfone and sulfentrazone combinations. Can. J. Plant Sci. 94: 1245–1253. Efficacy of soil-applied herbicides can be influenced by edaphic factors including soil organic matter (OM) content, as well as by interactions with herbicide tank-mix partners. Field trials were conducted over 6 site-years in 2011 and 2012 across western Canada to examine the interaction of pyroxasulfone and sulfentrazone when co-applied for control of false cleavers (Galium spurium L.) and wild oat (Avena fatua L.) in field pea. In the greenhouse, the nature of this interaction was further investigated for these two weed species, plus barley and canola; in a separate experiment, the effect of OM content on pyroxasulfone and sulfentrazone efficacy was examined using three soils with 2.8, 5.5, and 12.3% OM content, respectively. Efficacy of pyroxasulfone and sulfentrazone combinations was additive under both field and greenhouse conditions. Higher OM content generally required higher rates of herbicide to achieve similar efficacy for all tested species. Pyroxasulfone and sulfentrazone can be combined to aid in herbicide resistance management and broaden the weed spectrum compared with each product used alone, although rate selection may be OM dependent.


Weed Science ◽  
1978 ◽  
Vol 26 (4) ◽  
pp. 352-358 ◽  
Author(s):  
P. N. P. Chow

In the greenhouse, the methyl ester of diclofop {2-[4-(2,4-diclorophenoxy)phenoxy] propanoic acid} as a postemergence application at 1.1 kg/ha ai did not affect the growth of the seven dicotyledonous crops with the exception of slight injury to yellow [white] mustard(Brassica hirtaMoench). Of the 13 gramineous species, corn(Zea maysL.), green foxtail [Setaria viridis(L.) Beauv.], oats(Avena sativaL.) wild oats(Avena fatuaL.), sorghum [Sorghum bicolor(L.) Moench], and timothy(Phleum pratenseL.) were rated highly susceptible, while barley(Hordeum vulgareL.), bromegrass [smooth brome](Bromus inermisLeyss.), durum wheat(Triticum durumDesf.), intermediate wheatgrass [Agropyron intermedium(Host) Beauv.], Russian wild ryegrass(Elymus junceusFisch.), triticale(X TriticosecaleWittmack), and wheat(Triticum aestivumL.) were relatively tolerant. Residue of diclofop in the soil partially controlled green foxtail which was seeded 3 weeks after herbicide application. Whether applied to wild oat shoots or roots, diclofop affected the entire plant, but growth reduction was great when applied to the shoots. Field results confirmed that foliar application gave the best weed control resulting in larger wheat yield increases. Wild oat control was greatly enhanced when an adjuvant was added to diclofop. This enhanced herbicidal activity appeared to have no effect on tolerance of barley at 0.8 kg/ha nor wheat at 1.1 kg/ha. Increasing the temperature from 12 to 28 C decreased wild oat control from diclofop at 1.1 kg/ha. In the field, diclofop at rates ranging from 0.8 to 2.2 kg/ha gave good control of wild oats and green foxtail resulting in significantly increased wheat yield compared to the checks. However, barley yield increases were obtained only at the rates from 0.8 to 1.1 kg/ha, indicating that at the higher rates barley was less tolerant than wheat. The 0.6 kg/ha rate with an adjuvant gave adequate weed control and significant barley yield increases over the checks, when evaluated on five barley cultivars.


1980 ◽  
Vol 20 (102) ◽  
pp. 77 ◽  
Author(s):  
BJ Radford ◽  
BJ Wilson ◽  
O Cartledge ◽  
FB Watkins

A series of field trials was sown on black earth soils on the Darling Downs, Queensland, with five wheat seeding rates x five levels of wild oat infestation. The lowest seeding rate required to produce optimum grain yield at a site was higher in wild oat infested plots than in weed-free plots. Increase in seeding rate reduced the dry weight of wild oats at maturity and increased the dry weight of wheat at maturity until wheat population density exceeded 150 plants m-2. Increase in seeding rate also reduced wild oat seed production, especially at low wild oat population densities.


1985 ◽  
Vol 65 (4) ◽  
pp. 1101-1106 ◽  
Author(s):  
A. L. DARWENT ◽  
J. H. SMITH

In a 4-yr study, rapeseed (Brassica campestris L.) was seeded where wild oats (Avena fatua L.) had been controlled either by various delayed seeding procedures or by an early spring application of trifluralin at 1.1 kg a.i./ha. The trifluralin treatment provided the best wild oat control. However, allowing wild oats to grow to the two-leaf stage, destroying them with cultivation and then seeding rapeseed resulted in commercially acceptable control (70% or more) with little or no loss of crop yield. Postponing cultivation until the wild oats reached the three- to four-leaf stage provided control that was almost equivalent to that attained with cultivation at the two-leaf stage but resulted in reduced crop yields. Destruction of wild oat seedlings at the two-leaf stage by paraquat or glyphosate did not improve the level of control over that provided by cultivation.Key words: Oat (wild), delayed seeding, rapeseed, trifluralin


1970 ◽  
Vol 48 (12) ◽  
pp. 2117-2121
Author(s):  
George Fleischmann

All isolates of oat crown rust, Puccinia coronata f. sp. avenae, identified in Canada in 1969 were inoculated onto 12 different lines containing resistance from wild oats, Avena sterilis, collected in Europe and the Middle East. Lines that contain resistance genes Pc-38 and Pc-39, and wild oat collections CI 8081 and F158, provide effective resistance to nearly every culture of crown rust. Regional differences in the level of virulence of crown rust cultures isolated from eastern and western Canada were observed on lines that contain A. sterilis resistance, with cultures of crown rust isolated from the east being generally less virulent than those from western Canada.


2017 ◽  
Vol 31 (5) ◽  
pp. 773-780
Author(s):  
Breanne D. Tidemann ◽  
Linda M. Hall ◽  
K. Neil Harker ◽  
Hugh J. Beckie

Herbicide resistance has increased the need for novel weed control strategies. Fluridone has herbicidal as well as potential germination stimulant activity. The objectives of this study were to evaluate fluridone as a fall-applied germination stimulant for weed control and to assess rotational crop tolerance. Fall-applied fluridone was compared with a nontreated control in areas established with false cleavers, volunteer canola, and wild oat at Lacombe, AB, in 2014–2015 and 2015–2016, and at St Albert, AB, in 2015–2016. In the fall, there was a trend for weed densities to be higher in fluridone treatments than in untreated controls across site-years. The stimulatory effect of fluridone on weed germination was not statistically significant in fall assessments, while the weed control effect was significant in 33% of spring assessments. While fluridone reduced weed biomass for some site-years, it also reduced canola crop emergence and biomass at St Albert in 2015–2016, and caused injury symptoms on wheat and field pea. Risk of carryover to subsequent crops outweighed the benefits of using fluridone in the fall to stimulate weed germination in this study.


1981 ◽  
Vol 61 (2) ◽  
pp. 383-390 ◽  
Author(s):  
P. A. O’SULLIVAN

The phytotoxicity of barban, diclofop, difenzoquat and flamprop to wild oats (Avena fatua L.) was reduced when these herbicides were tank-mixed with propanil or propanil/MCPA. Green foxtail (Setaria viridis L.) control with propanil and propanil/MCPA was poor. Propanil/MCPA in a tank mixture with diclofop reduced diclofop control of green foxtail. Barban in a tank mixture with propanil increased green foxtail and Tartary buckwheat (Fagopyrum tataricum L. Beauv.) control compared to propanil alone. All other tank mixtures of propanil or propanil/MCPA with the wild oat herbicides had no significant effects on green foxtail control compared with propanil or propanil/MCPA. Tartary buckwheat control with propanil was good and the wild oat herbicides (except barban) in tank mixtures with propanil did not influence Tartary buckwheat control. There was an early chlorosis of wheat following treatments containing propanil or propanil/MCPA but this disappeared later in the growing season. Because of the reduced wild oat control with tank mixtures of propanil or propanil/MCPA with barban, diclofop, difenzoquat or flamprop, use of these mixtures for broadspectrum weed control is not practical.


1979 ◽  
Vol 59 (1) ◽  
pp. 243-244 ◽  
Author(s):  
W. M. HAMMAN

Indices of competition of 0.0339 for wild oats (Avena fatua L.) in wheat (Triticum aestivum L. emend Thel.) and 0.0230 for wild oats in barley (Hordeum vulgare L.) as developed by Dew (1972) were confirmed. Actual yield loss determinations were made by utilizing data collected from herbicide-treated (considered wild oat-free) and non-treated areas on field-scale trials scattered across Western Canada.


Weed Science ◽  
1974 ◽  
Vol 22 (5) ◽  
pp. 476-480 ◽  
Author(s):  
Robert W. Neidermyer ◽  
John D. Nalewaja

The response of wheat (Triticum aestivum L.) and wild oat (Avena fatua L.) to barban (4-chloro-2-butynyl-m-chlorocarbanilate) was studied as influenced by plant morphology and air temperature after application. Growth of wheat and wild oat seedlings was reduced by barban at 0.3 μg and 0.6 μg applied to the first node, respectively. Barban application to the base and midpoint of the first leaf blade required a lower dose to reduce wild oat growth than wheat growth. Increased tillering occurred from barban injury to the main culm in wheat. Wheat and wild oat susceptibility to barban increased as the post-treatment temperature decreased from 32 to 10 C. Barban selectivity for wild oats in wheat was greater at 27 and 21 C than at 16 and 10 C.


Sign in / Sign up

Export Citation Format

Share Document