Water-Deficit Stress Tolerance Differs between Two Locoweed Genera (Astragalus and Oxytropis) with Fungal Endophytes

Weed Science ◽  
2017 ◽  
Vol 65 (5) ◽  
pp. 626-638 ◽  
Author(s):  
Nina Klypina ◽  
Matthew Pinch ◽  
Brian J. Schutte ◽  
Janakiraman Maruthavanan ◽  
Tracy M. Sterling

Locoweeds are plants of the genera Astragalus and Oxytropis (Fabaceae family) and are toxic to cattle, sheep, and horses. The toxic property of locoweeds is due to the alkaloid swainsonine (SWA), which is synthesized by an endophytic fungus Alternaria spp. section Undifilum. Although the endophyte–locoweed complex is often considered mutualistic, empirical evidence for benefits to host plants is lacking. This study: 1) compared the growth, photosynthesis, and leaf pigment and antioxidant concentrations between endophyte-infected and endophyte-free plants under well-watered and water-deficit conditions; and 2) measured SWA to determine whether SWA concentrations are attenuated by water deficit and leaf age. Locoweed species in this study were woolly loco and silky crazyweed. Endophyte-infected and endophyte-free (by removal of seed coat) seedlings, as confirmed by DNA analyses, were grown under greenhouse conditions for 6 mo, after which plants were subjected to three 12- to 15-d water-deficit periods that created sublethal drought conditions. Results suggest that the endophyte did not influence photosynthetic gas exchange and leaf pigment concentrations. Under well-watered conditions only, endophyte-infected woolly loco plants had lower shoot and root biomass and higher concentrations of α-tocopherol than endophyte-free plants. SWA analyses revealed taxon-specific effects of water deficit, with water deficit increasing SWA concentrations in young leaves of woolly loco but not affecting SWA concentration in silky crazyweed. These results suggest that the endophyte behaves as a parasite in woolly loco plants grown under optimal but not under water-limited conditions. Further, results indicate that drought conditions elevate the toxicity of woolly loco plants. Improved understanding of endophyte-locoweed interactions and factors influencing SWA levels will contribute to the development of livestock management strategies to predict toxicity in particular locoweed populations.

2014 ◽  
Vol 1 (1) ◽  
pp. 20-24
Author(s):  
Gader Ghaffari ◽  
Farhad Baghbani ◽  
Behnam Tahmasebpour

In order to group winter rapeseed cultivars according to evaluated traits, an experiment was conducted in the Research Greenhouse of Agriculture Faculty, University of Tabriz - IRAN. In the experiment were included 12 cultivars of winter rapeseed and 3 levels of water deficit stress. Gypsum blocks were used to monitor soil moisture. Water deficit stress was imposed from stem elongation to physiological maturity. According to the principal component analysis, five principal components were chosen with greater eigenvalue (more than 0.7) that are including 81.34% of the primeval variance of variables. The first component that explained the 48.02% of total variance had the high eigenvalue. The second component could justify about 13.64% of total variance and had positive association with leaf water potential and proline content and had negative relationship with leaf stomatal conductivity. The third, fourth and fifth components expressed around, 10.18, 4.83 and 4.68% of the total variance respectively. The third component had the high eigenvalue for plant dry weight. The fourth component put 1000-seed weight, seed yield, Silique per Plant and root dry weight against plant dry weight, chlorophyll fluorescence and leaf water potential. The fifth component had the high eigenvalue for root dry weight, root volume and 1000-seed weight.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xin Jia ◽  
Ke Mao ◽  
Ping Wang ◽  
Yu Wang ◽  
Xumei Jia ◽  
...  

AbstractWater deficit is one of the major limiting factors for apple (Malus domestica) production on the Loess Plateau, a major apple cultivation area in China. The identification of genes related to the regulation of water use efficiency (WUE) is a crucial aspect of crop breeding programs. As a conserved degradation and recycling mechanism in eukaryotes, autophagy has been reported to participate in various stress responses. However, the relationship between autophagy and WUE regulation has not been explored. We have shown that a crucial autophagy protein in apple, MdATG8i, plays a role in improving salt tolerance. Here, we explored its biological function in response to long-term moderate drought stress. The results showed that MdATG8i-overexpressing (MdATG8i-OE) apple plants exhibited higher WUE than wild-type (WT) plants under long-term moderate drought conditions. Plant WUE can be increased by improving photosynthetic efficiency. Osmoregulation plays a critical role in plant stress resistance and adaptation. Under long-term drought conditions, the photosynthetic capacity and accumulation of sugar and amino acids were higher in MdATG8i-OE plants than in WT plants. The increased photosynthetic capacity in the OE plants could be attributed to their ability to maintain optimal stomatal aperture, organized chloroplasts, and strong antioxidant activity. MdATG8i overexpression also promoted autophagic activity, which was likely related to the changes described above. In summary, our results demonstrate that MdATG8i-OE apple lines exhibited higher WUE than WT under long-term moderate drought conditions because they maintained robust photosynthesis, effective osmotic adjustment processes, and strong autophagic activity.


2021 ◽  
Vol 22 (10) ◽  
pp. 5314
Author(s):  
Marlon-Schylor L. le Roux ◽  
Nicolas Francois V. Burger ◽  
Maré Vlok ◽  
Karl J. Kunert ◽  
Christopher A. Cullis ◽  
...  

Drought response in wheat is considered a highly complex process, since it is a multigenic trait; nevertheless, breeding programs are continuously searching for new wheat varieties with characteristics for drought tolerance. In a previous study, we demonstrated the effectiveness of a mutant known as RYNO3936 that could survive 14 days without water. In this study, we reveal another mutant known as BIG8-1 that can endure severe water deficit stress (21 days without water) with superior drought response characteristics. Phenotypically, the mutant plants had broader leaves, including a densely packed fibrous root architecture that was not visible in the WT parent plants. During mild (day 7) drought stress, the mutant could maintain its relative water content, chlorophyll content, maximum quantum yield of PSII (Fv/Fm) and stomatal conductance, with no phenotypic symptoms such as wilting or senescence despite a decrease in soil moisture content. It was only during moderate (day 14) and severe (day 21) water deficit stress that a decline in those variables was evident. Furthermore, the mutant plants also displayed a unique preservation of metabolic activity, which was confirmed by assessing the accumulation of free amino acids and increase of antioxidative enzymes (peroxidases and glutathione S-transferase). Proteome reshuffling was also observed, allowing slow degradation of essential proteins such as RuBisCO during water deficit stress. The LC-MS/MS data revealed a high abundance of proteins involved in energy and photosynthesis under well-watered conditions, particularly Serpin-Z2A and Z2B, SGT1 and Calnexin-like protein. However, after 21 days of water stress, the mutants expressed ABC transporter permeases and xylanase inhibitor protein, which are involved in the transport of amino acids and protecting cells, respectively. This study characterizes a new mutant BIG8-1 with drought-tolerant characteristics suited for breeding programs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. A. Gomaa ◽  
Essam E. Kandil ◽  
Atef A. M. Zen El-Dein ◽  
Mamdouh E. M. Abou-Donia ◽  
Hayssam M. Ali ◽  
...  

AbstractIn Egypt, water shortage has become a key limiting factor for agriculture. Water-deficit stress causes different morphological, physiological, and biochemical impacts on plants. Two field experiments were carried out at Etay El-Baroud Station, El-Beheira Governorate, Agriculture Research Center (ARC), Egypt, to evaluate the effect of potassium silicate (K-silicate) of maize productivity and water use efficiency (WUE). A split-plot system in the four replications was used under three irrigation intervals during the 2017 and 2018 seasons. Whereas 10, 15, and 20 days irrigation intervals were allocated in main plots, while the three foliar application treatments of K-silicate (one spray at 40 days after sowing; two sprays at 40 and 60 days; and three sprays at 40, 60, and 80 days, and a control (water spray) were distributed in the subplots. All the treatments were distributed in 4 replicates. The results indicated that irrigation every 15 days gave the highest yield in both components and quality. The highly significant of (WUE) under irrigation every 20 days. Foliar spraying of K-silicate three times resulted in the highest yield. Even under water-deficit stress, irrigation every fifteen days combined with foliar application of K-silicate three times achieved the highest values of grain yield and its components. These results show that K-silicate treatment can increase WUE and produce high grain yield requiring less irrigation.


2021 ◽  
Vol 22 (3) ◽  
pp. 1158
Author(s):  
Katy Díaz ◽  
Luis Espinoza ◽  
Rodrigo Carvajal ◽  
Evelyn Silva-Moreno ◽  
Andrés F. Olea ◽  
...  

Brassinosteroids (BRs) are plant hormones that play an essential role in plant development and have the ability to protect plants against various environmental stresses, such as low and high temperature, drought, heat, salinity, heavy metal toxicity, and pesticides. Mitigation of stress effects are produced through independent mechanisms or by interaction with other important phytohormones. However, there are few studies in which this property has been reported for BRs analogs. Thus, in this work, the enhancement of drought stress tolerance of A. thaliana was assessed for a series of 2-deoxybrassinosteroid analogs. In addition, the growth-promoting activity in the Rice Lamina Inclination Test (RLIT) was also evaluated. The results show that analog 1 exhibits similar growth activity as brassinolide (BL; used as positive control) in the RLIT bioassay. Interestingly, both compounds increase their activities by a factor of 1.2–1.5 when they are incorporated to polymer micelles formed by Pluronic F-127. On the other hand, tolerance to water deficit stress of Arabidopsis thaliana seedlings was evaluated by determining survival rate and dry weight of seedlings after the recovery period. In both cases, the effect of analog 1 is higher than that exhibited by BL. Additionally, the expression of a subset of drought stress marker genes was evaluated in presence and absence of exogenous applied BRs. Results obtained by qRT-PCR analysis, indicate that transcriptional changes of AtDREBD2A and AtNCED3 genes were more significant in A. thaliana treated with analog 1 in homogeneous solution than in that treated with BL. These changes suggest the activation of alternative pathway in response to water stress deficit. Thus, exogenous application of BRs synthetic analogs could be a potential tool for improvement of crop production under stress conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haipei Liu ◽  
Amanda J. Able ◽  
Jason A. Able

AbstractWater-deficit stress negatively affects wheat yield and quality. Abiotic stress on parental plants during reproduction may have transgenerational effects on progeny. Here we investigated the transgenerational influence of pre-anthesis water-deficit stress by detailed analysis of the yield components, grain quality traits, and physiological traits in durum wheat. Next-generation sequencing analysis profiled the small RNA-omics, mRNA transcriptomics, and mRNA degradomics in first generation progeny. Parental water-deficit stress had positive impacts on the progeny for traits including harvest index and protein content in the less stress-tolerant variety. Small RNA-seq identified 1739 conserved and 774 novel microRNAs (miRNAs). Transcriptome-seq characterised the expression of 66,559 genes while degradome-seq profiled the miRNA-guided mRNA cleavage dynamics. Differentially expressed miRNAs and genes were identified, with significant regulatory patterns subject to trans- and inter-generational stress. Integrated analysis using three omics platforms revealed significant biological interactions between stress-responsive miRNA and targets, with transgenerational stress tolerance potentially contributed via pathways such as hormone signalling and nutrient metabolism. Our study provides the first confirmation of the transgenerational effects of water-deficit stress in durum wheat. New insights gained at the molecular level indicate that key miRNA-mRNA modules are candidates for transgenerational stress improvement.


Author(s):  
Alberto Soares de Melo ◽  
Allisson Rafael Ferreira da Silva ◽  
Alexson Filgueiras Dutra ◽  
Wellison Filgueiras Dutra ◽  
Marcos Eric Barbosa Brito ◽  
...  

Cowpea is a crop with great economic, social and food importance in semi-arid regions, but its production is drastically reduced by the water deficit in these regions, requiring better management strategies that allow the crop’s production. This study therefore aimed to evaluate the photosynthetic efficiency and production of cowpea cultivars under deficit irrigation replacement levels. The experiment tested three cowpea genotypes (G1 = ‘BRS Aracé’, G2 = ‘BR 17 Gurguéia’ and G3 = ‘BRS Marataoã’) and four irrigation depths (40, 60, 80 and 100% of ETc), resulting in a 3 x 4 factorial scheme, arranged in randomized complete blocks design with four replicates. During the experiment, the gas exchanges, chlorophyll a fluorescence and production of the cowpea genotypes under deficit irrigation were evaluated. Carbon fixation in the photosynthetic metabolism of cowpea plants was reduced by accentuated water deficit, regardless of the genotype. The low stress severity was indicated by the lack of effects on chlorophyll fluorescence, indicating that the reduction in the rate of carbon assimilation was due to the stomatal effects. The irrigation with 80% of ETc can be used in the cultivation of the respective cultivars, but with small losses in the production. Among the genotypes, ‘BRS Marataoã’ stands out with respect to yield, with higher values for weight of pods and green beans.


1990 ◽  
Vol 68 (1) ◽  
pp. 102-105 ◽  
Author(s):  
P. Norberg ◽  
K. Larsson ◽  
C. Liljenberg

Rape seedlings were acclimated to evaporative dehydration by exposure to repeated moderate water-deficit stress. The stress program started after 19 days of growth and consisted of three, 24-h stress periods interspersed with 24-h rewatering periods. After the third stress period the roots were harvested and microsomal membranes were isolated. Control plants were grown under equivalent conditions without stress (nonacclimated cells). Total lipids were extracted from the membranes and investigated with X-ray crystallography and polarization microscopy at different degrees of hydration and temperatures. In excess water, the membrane lipids from both acclimated and nonacclimated cells exhibited a cubic phase. The lipids from the nonacclimated cells formed a hexagonal (HII) phase on dehydration. The lipids from the acclimated cells behaved in a different way during dehydration, where the cubic phase was transformed to an L2 phase via an intermediate HII phase. At increasing temperatures, the hydrated cubic phase started to form an L2 phase at 30 °C and was fully converted to the liquid-type state at 42 °C. The mesomorphic phase behaviour is discussed in relation to membrane activity.Key words: water-deficit stress, microsomal membranes, X-ray crystallography, polarization microscopy.


Sign in / Sign up

Export Citation Format

Share Document